
The openair manual
open-source tools for analysing air pollution data

King’s College London

OPEN so
u
rc

e

David Carslaw
version: 11thMay 2012

The openair package and the documentation are provided in the hope that it is use-
ful to you. While these tools are free, if you use them, we ask that acknowledgement
be given to their source. Please cite:
Carslaw, D.C. and K. Ropkins, (2012). openair — an R package for air quality data
analysis. EnvironmentalModelling & Software. Volume 27-28, 52-61.
Carslaw, D.C. (2012). The openairmanual—open-source tools for analysing air pol-
lution data. Manual for version 0.6-0, King’s College London.
Every effort has beenmade to ensure the proper functioning of these tools and their

effective and accurate documentation. Wewould like to be informed of any problems
or queries related you have relating to their use. All correspondence should be sent to
mailto:david.carslaw@kcl.ac.uk.
The website for this project is http://www.openair-project.org.
This document was produced using R version 2.15.0 and openair version 0.6-0.

Copyright © 2012David C. Carslaw.

mailto:david.carslaw@kcl.ac.uk
http://www.openair-project.org

Contents

Contents

I Introduction to R for analysing data 7
1 Introduction 7
1.1 Background . 7
1.2 Using this document . 7
1.3 The open-source approach . 8
1.4 Aims . 8
1.5 Can I use these tools for commercial purposes? 9

2 Statistical software R 10
2.1 Introduction to R . 10
2.2 Why use R? . 11
2.3 Why not use R? . 11
2.4 Some useful R resources . 12

3 Basic use of R 13
3.1 Introduction . 13
3.2 Use it as a calculator . 13
3.3 Basic graph plotting . 15
3.4 Getting help . 16

4 Using R to analyse air pollutionmonitoring data 17
4.1 Getting data into R . 17
4.2 More sophisticated plotting . 19
4.3 Plotting time series with different averaging times 20

4.3.1 Enhancing plots . 24
4.4 Amore complicated example— plot construction 25
4.5 Summarising time series data . 26
4.6 Relationships between variables . 26

5 General use of R— advice and examples 31
5.1 Data input and output . 31

5.1.1 Data import . 31
5.1.2 Data export . 32

5.2 Selecting and replacing parts of vectors and data frames 32
5.3 Combining and cleaning up files . 35
5.4 Reshaping data . 41
5.5 Example: converting hour-day data to column format 43
5.6 Daily means from hourly means— processing wind direction data 45
5.7 Using an Editor . 45

5.7.1 Using the built-in editor . 45
5.7.2 Using a dedicated editor . 46

5.8 Several plots on one page . 48
5.9 Graphing lots of data – using level plots . 49
5.10 Special symbols for use in plotting air pollution data 50
5.11 Using databases with R . 52

6 Multivariate plots - introduction to the Lattice package 54
6.1 Introduction to the Lattice package . 54

3

Contents

6.2 Example simple plots . 54
6.3 Amore complicated plot — plot each year of data in a separate panel 55
6.4 Showing trends dependent on a third variable 58

7 Functions in R 60

II Dedicated functions for analysing air pollution data 61
8 Introduction 61
8.1 Installing and loading the openair package 61
8.2 Where is the source code? . 62
8.3 Brief introduction to openair functions . 62
8.4 Input data requirements . 66

8.4.1 Dealing withmore than one site . 67
8.5 Using colours . 67
8.6 Automatic text formatting . 68
8.7 Multiple plots on a page . 69
8.8 Getting help . 69

9 Getting data into openair 70
9.1 The import function . 71
9.2 The importAURN function . 73
9.3 The importKCL function . 74
9.4 Importing data from the CERCADMSmodelling systems 75

9.4.1 An example considering atmospheric stability 76
10 The summaryPlot function 79
11 The cutData function 82
12 The windRose and pollutionRose functions 84
12.1 Purpose . 84
12.2 Options available . 84
12.3 Example of use . 86

13 The percentileRose function 90
13.1 Purpose . 90
13.2 Options available . 90
13.3 Example of use . 91

14 The polarFreq function 93
14.1 Purpose . 93
14.2 Options available . 93
14.3 Example of use . 95

15 The polarPlot and polarCluster functions 101
15.1 Purpose . 101
15.2 Options available . 102
15.3 Example of use . 105

16 The polarAnnulus function 115
16.1 Purpose . 115

4

Contents

16.2 Options available . 115
16.3 Example of use . 117

17 The timePlot function 119
17.1 Purpose . 119
17.2 Options available . 120
17.3 Example of use . 122

18 The calendarPlot function 125
18.1 Purpose . 125
18.2 Options available . 125
18.3 Example of use . 126

19 The TheilSen function 130
19.1 Purpose . 130
19.2 Options available . 131
19.3 Example of use . 133
19.4 output . 136

20 The smoothTrend function 138
20.1 Purpose . 138
20.2 Options available . 138
20.3 Example of use . 140

21 The timeVariation function 144
21.1 Purpose . 144
21.2 Options available . 145
21.3 Example of use . 147
21.4 Output . 150

22 The scatterPlot function 151
22.1 Purpose . 151
22.2 Options available . 152
22.3 Example of use . 155

23 The linearRelation function 158
23.1 Options available . 159
23.2 Example of use . 160

24 The trendLevel function 161
24.1 Purpose . 161
24.2 Options available . 161
24.3 Example of use . 162

25 GoogleMapsPlot function 166
25.1 Purpose . 166
25.2 Options available . 166
25.3 Example of usage . 169

26 openair back trajectory functions 173
26.1 Back trajectory cluster analysis with the trajCluster function 180

5

Contents

27 Model evaluation— the modStats function 182
27.1 Purpose . 182
27.2 Options available . 185
27.3 Example of use . 185

28 Model evaluation— the TaylorDiagram function 188
28.1 Purpose . 188
28.2 Options available . 189
28.3 Example of use . 192

29 Model evaluation— the conditionalQuantile and conditionalEval functions193
29.1 Purpose . 193
29.2 Options available . 194
29.3 Example of use . 195

30 The calcFno2 function—estimating primary NO2 fractions 199
30.1 Purpose . 199
30.2 Options available . 199
30.3 Example of use . 200

31 Utility functions 202
31.1 Selecting data by date . 202
31.2 Selecting run lengths of values above a threshold— pollution episodes . . . 203
31.3 Calculating rollingmeans . 205
31.4 Aggregating data by different time intervals 206
31.5 Calculating percentiles . 209
31.6 The corPlot function— correlationmatrices 210
31.7 Preparing data to compare sites, for model evaluation and intervention

analysis . 211
31.7.1 Intervention analysis . 212
31.7.2 Combining lots of sites . 213

Acknowledgements 215
Further information and bug reporting 216
A Installing andmaintaining R 220
A.1 Downloading and installing R . 220
A.2 Maintenance . 220

B Bootstrap estimates of uncertainty 221
B.1 The bootstrap . 221
B.2 The block bootstrap . 222

C A closer look at trends 224

6

Part I
Introduction to R for analysing data

1 Introduction
1.1 Background

This document provides information on the use of computer software called ‘R’ to analyse
air pollution data. The document supports an initiative to develop andmake available a
consistent set of tools for analysing and understanding air pollution data in a free, open-
source environment.
The amount of monitoring data available is substantial and increasing. In the UK alone

there are thought to be over 1000 continuousmonitoring sites. Much of the data available
is only briefly analysed; perhaps with the aim of comparing pollutant concentrations with
national and international air quality limits. However, as it will hopefully be seen, the
critical analysis of air pollution data can be highly rewarding, perhaps yielding important
information on pollutant sources that was previously unknown or unquantified.
There are however, several barriers that prevent the more effective analysis of air

pollution data. These include user knowledge (knowing how to approach analysis and
which techniques to use), cost (both in time andmoney) and access to specialist software
that might be necessary to carry out all but themost simple types of analysis. Part of the
aim of this document and its associated tools is to overcome some of these barriers.

1.2 Using this document
This document has been specifically written for those with an interest in analysing air
quality data, although the techniques also lend themselves to wider atmospheric science
problems and other sources of data e.g. traffic data. It is split into two parts.
Part I gives some background information on R and provides examples of using Rwith an

air pollution data set from London. The intention here is to give an overview of how
to use R and this is donemostly by considering actual air pollution data.

Part II describes dedicated functions for analysing air pollution data, which are available
in the R ‘package’ called openair. Even though the capabilities of the functions in
Part II are greater than those highlighted in Part I, they are easier to apply.

The document assumes no previous knowledge of R. The document itself contains code
which can be used directly in R (just copy and paste it in — see later). All the code used
tomake plots is shown in this manual. This code is the code that can be typed into R and
can be copied directly from this document and pasted into R. The latter makes it easier to
become familiar with the R language. The code also uses ‘mark-up’ to highlight functions,
options etc. In addition, where a plot is produced, the code immediately precedes it. Users
are encouraged to reproduce the plots shown and produce their own variations on them
— for example, by plotting different pollutants. The document also contains extensive
hypertext links tomake it easy to navigate and cross-reference sections, figures etc. The
document ismeant to be a kind ofwork book, allowing users towork through the examples
from start to finish. However, it also acts as a reference guide to using R for the specific
purposes of analysingmonitoring data.
This document was produced entirely using free software. The document itself was

produced using the LATEX typesetting programme and all the plots were produced using R.

7

1 Introduction

1.3 The open-source approach
The tools developed that are described here are open-source. This means that they are
freely available to anybody and all the source code is open to scrutiny. Free software
allows users the freedom to run, copy, distribute, study, change and improve the software.
This philosophy is espoused at http://www.gnu.org/philosophy/free-sw.html.
The open-source approach is fundamental to this initiative. There aremany advantages

to open-source software tools beyond their zero direct cost. First is the belief that making
tools open it will encourage their use and scrutiny. Second, bymaking tools available in this
way it ismore likely that otherswill contribute to them– perhaps identifying or fixing bugs,
or maybe developing them further, as is the case for many open-source software projects.
As described in Chambers (2007), the open-source approach can help lead to trustworthy
software, and this is an important component of the aims here. It is a community approach
that encourages trust and participation.
There are also difficulties in adopting an open-source approach however, not least the

need for organisations tomakemoney from their work. The development of these tools
needs to be paid for somehow. However, there are organisations and individuals that see
benefit in this way of working and are willing to fund or contribute to this initiative. Those
who have contributed so far to this project are listed in the acknowledgements section.
In the environmental field there aremaybe evenmore compelling arguments for using

open-source tools. Many believe for example that those affected by environmental de-
cisions reached through using tools/models/data should be able to scrutinise them – and
why not? However, the reality is often far from this situation and there is often reliance on
‘black boxes’ where such scrutiny is not possible.

1.4 Aims
The aims of this document are as follows:
• To highlight the importance of looking at data effectively.
• To introduce the statistical software R and provide some background to the lan-
guage.

• To show howR can be used to look at and understand air pollutionmonitoring data
typically collected by local authorities, on behalf of governments and industry. How-
ever, the tools should also be very useful for those involved in academic research.

• To free-up time to think about air quality data rather than spending time preparing
and analysing data. Part II in particular is aimed at providing functions that are easy
to use so that more time can be spent onmore productive activities.

The focus is very much on being pragmatic — the basic approach is to learn by doing.
There are many books and on-line documents on R and these notes are not meant to
duplicate them. The approach used here is example-based, as it is our experience that this
is the best way in which to learn to use R. Also, some of the concepts are easier to digest
if applied to a problem or data set that is familiar. This document cannot cover all the
aspects of R thatmay be relevant or useful for the analysis of air pollution, but provides
more of an introduction to howR can be used.
It is also important to stress that these functions aremost useful when there is a clear

purpose to the analysis. While Exploratory Data Analysis (EDA) is extremely valuable, there
is no substitute for having a clear aim (Tukey, 1977). This was perhaps best expressed by
the statistician John Tukeywho developed the idea of EDA:

8

http://www.gnu.org/philosophy/free-sw.html

1 Introduction

The combination of some data and an aching desire for an answer does not ensure
that a reasonable answer can be extracted from a given body of data.

How this document was produced
One of the aims of this document was to ensure that users are able to
reproduce all the analyses exactly as intended. This is not a straightforward
task for a complex project under continual development. In addition, the
large amount of code and functions presented provides many opportunities
for things going wrong. It is easy, for example, to show how a function works
and provide the results/plot; update the function and then find out that the
options have changed and it no longer runs as intended. In other words, the
documentation and the tools themselves go out of sync. Even cutting and
pasting text can easily go wrong — as we have discovered.
For this reason we have adopted an innovative approach (as far as we are
concerned) to ensuring that everything works as intended. This document
blends text with code in that the whole document must be ‘run’ to produce it.
Each time a version of this documentation is produced, all the code is run at
the same time to generate all the various outputs e.g. plots. This means that
all users should be able to reproduce exactly the same outputs as shown in
this report.a

The system used is called Sweave (Leisch, 2002). Sweave mixes a typesetting
system (LATEX) with R. When a document is produced, blocks of code embed-ded in the LATEX file are recognised and run in R. In some ways it reverses
the ‘normal’ way of doing things — rather than document computer code, the
documentation is written to contain the code. The document will not compile
if the code does not function — it is as simple as that. In our document, most
of the outputs are graphics, but increasingly quantitative information will also
be produced.
In adopting this approach we found many problems with the manual (and
some functions), even though we took care to develop this work. In time we
also have ideas for using this approach to automatically carry out analyses.
Imagine a report similar to this (but written more as a tutorial) where the
data used are your own data. This approach would have the major advantage
that all the analyses would be directly relevant to the user in question, and
entirely reproducible. Our web site will in time provide more information
about this.
aIt takes around half an hour to compile this document.

1.5 Can I use these tools for commercial purposes?
In short, the answer is yes. Part of the aim of producing these tools was to allow anybody to
use them for any purpose. Indeed, this is the principal purpose of the Knowledge Exchange
grant. Our work is verymuch released in the true spirit of the Free Software Foundation
http://www.fsf.org/. However, there are a few points users should note:

9

http://www.fsf.org/

2 Statistical software R

1. If you use these tools in reports, publications etc., we ask that you cite their source
(see the preamble at the beginning concerning how to do this).

2. It is not possible to provide a guarantee or warranty for these tools, although we
have tried hard to ensure they function as documented and are adoptingmethods
for quality control.

3. We request that should you find these tools useful and enhance them, that youmake
such enhancements available to us for wider use.

4. Formoredetailed informationon thevarious licensesunderwhichRand its packages
operate, the user is referred to the Rwebsite.

2 Statistical software R
2.1 Introduction to R

R is a computer programming languagedeveloped specifically for thepurposes of analysing
data (R-project). It is variously described as a statistical system, a system for statistical
computation and graphics, and an environment for data analysis and statistics. Its origins
go back to innovative developments at Bell Laboratories in the USA during the 1970s,
where the language developed was called S. Since that time S has become commercial
software and is sold as S-Plus by the Insightful Corporation.
Over the past 10 years or so an open-source version of S has been developed called R.

Unlike some open-source software R is highly developed, highly capable andwell estab-
lished. It is very robust andworks on awide range of platforms (e.g. Windows,Mac, and
Linux). One of its strengths is the large and growing community of leading researchers
that contribute to its development. Increasingly, leading statisticians and computational
scientists choose to publish their work in R; making their work available worldwide and
encouraging the adoption and use of innovativemethodologies.
R is available as Free Software under the terms of the Free Software Foundation’s GNU

General Public License.
Another key strength of R is the package system of its operation. The base software,

which is in itself highly capable (e.g. offering for example linear and generalized linear
models, nonlinear regressionmodels, time series analysis, classical parametric and non-
parametric tests, clustering and smoothing), has been greatly extended by additional
functionality. Packages are available to carry out a wide range of analyses including:
generalized additivemodels, linear and non-linearmodelling, regression trees, Bayesian
approaches etc.
For air pollution purposes, R represents the ideal system with which to work. Core

features such as effective data manipulation, data/statistical analysis and high quality
graphics lend themselves to analysing air pollution data. The ability to develop one’s own
analyses, invent new plots etc. using Rmeans that advanced tools can be developed for
specific purposes. Indeed, Part II of this document is focussed on the use of dedicated tools
for air quality analysis. The use of R ensures that analyses and graphics are not constrained
to “off the shelf” tools. These tools will often contain functionalities that are either part of
the R base system or that exist through specific packages.
The principal difficulty in using R is the steep learning curve in being able to use it

effectively. Manywith programming experience (e.g. FORTRAN, C++) tend to find R an
easier language to learn than those that have no experience in programming. However,
for most users this is not the experience. One of the principal difficulties is the lack of a
nice graphical user interface (GUI). However, themore one develops tools in R, themore

10

http://www.r-project.org
http://www.gnu.org
http://www.r-project.org/COPYING
http://www.r-project.org/COPYING

2 Statistical software R

Figure 1: The basic R console.

it is realised that a GUI approach significantly constrains capabilities (try plotting trends
for each hour of the day. While it certainly takes considerable effort to learn to use R, the
rewards are also high.

2.2 Why use R?
There are numerous reasons why R is a good choice for analysing data. A few are listed
below.
• It is free! This for many people is the key attraction. For this reason, R has become
increasingly popular among a wide range of users including universities and busi-
nesses.

• It works on several platforms e.g. Windows,MacOS, and Linux. This makes it very
portable and flexible. It is also extremely robust; it is remarkably bug-free and
crashes are very rare.

• It has been designed with data analysis in mind — to carry out analysis quickly,
effectively and reliably.

• The base system offers a very wide range of data analysis and statistical abilities.
• Excellent graphics output that will grace any report. Furthermore, all the default
plotting options have been carefully thought out unlike Excel, for example, whose
default plotting options are very poor. There are over 3000 packages that offer all
kinds of wonderful analysis techniques not found in any other software package. R
continues to rapidly grow in popularity, which has resulted in better information for
users e.g. there are nowmany dedicated books.

2.3 Why not use R?
For all its inherent strengths, R does have drawbacks. Here are a few.
• It is difficult to learn— there is a steep ‘learning curve’.1 Manywould argue this is not
the case; particularly if you are familiar with another programming language such as
C++ or Fortran. However, our experience is that it is hard work for most people.

1A steep learning curvemeans you learn a lot per unit time . . .

11

2 Statistical software R

• There is no Graphical User Interface; instead one has something that looks like a
DOS screen where one types commands. This seems very old-fashioned and at odds
with the modern computing experience, but with use you will begin to see this as
real advantage. Awhole report can be based on a series of ‘scripts’ that can be run to
carry out analysis. It is not so easy to recordmousemovements andmenu choices . . .

• There is no help or support — or little that is apparent. This is true, especially
compared with commercial software. However, there is extensive on-line help
available and many people have written manuals and guides. This document also
aims to address the lack of direct, specific support for air pollution analysis.

We have used several systems for data analysis over the years. These have included
databases, Visual Basic, GIS, contouring software, statistics software andExcel. Wealways
found it frustrating to do some analysis in Visual Basic, for example, then transfer it to
another application for plotting and further analysis. Wewrote code to carry out various
statistical analyses too. For us, R does all these thing in one place to a very high standard.
Another increasingly important aspect is the ability to run simulations. Until relatively

recently computers were not powerful enough to routinely run simulations usingmethods
such as randomization, Monte Carlo and bootstrap calculations. All these approaches can
greatly enhancemany analyses and they are used inmany of the functions described in
this document. Often, the reason is to obtain a better estimate of uncertainties, which
are important to consider when trying to draw inferences from data. Also, many of these
methods were essentially inaccessible; or at least beyond consideration for most. This is
where R excels — all these methods exist or can be coded building on some of the base
functions.

2.4 Some useful R resources
Theweb is the best place to find information on R. There aremany useful documents that
people have written (see http://www.r-project.org/) under documentation/other. The
official user guides can be hard going for many that are completely new to R, but worth a
look later.
We also have the R Book byMichael Crawley, which is quite useful (Crawley, 2007). This

is a big book full of examples. It is not well laid-out and has come in for some criticism but
we have nevertheless found it to be useful. Another useful book is by JohnMaindonald
and John Braun (Maindonald and Braun, 2007). Perhaps the best introductory book is that
by Dalgaard (2008), which provides a gentle introduction to R, is well-written and up to
date. Dalgaard (2008) also covers basics statistics, with the added benefit of their use in R.
It is worth also having a look at the R-project pages as they provide a list of R books—even
forthcoming titles not yet published. For those getting into Rmore seriously, I strongly
recommend Spector (2008) for datamanipulation and Sarkar (2007) for graph plotting
using the lattice package.
There are some useful contributed documents on the R web-pages. Under theDocu-

mentation section on the main page have a look at Other | contributed documentation.
We found that “An Introduction to R: Software for Statistical Modelling & Computing”
by Petra Kuhnert and Bill Venables was very useful and also the document from David
Rossiter (also check hisweb site – he hasmade available lots of high quality information on
R and its uses at http://www.itc.nl/personal/rossiter/pubs/list.html#pubs_m_R).
A very good (and free) book is by Helsel and Hirsch (2002) from the USGeological Sur-

vey (see http://pubs.usgs.gov/twri/twri4a3/). Although the book does not consider
R, it provides an excellent grounding in the types of statistics relevant to air pollution
monitoring. This book is all about water resources and statistical methods that can be

12

http://www.r-project.org/
http://www.itc.nl/personal/rossiter/pubs/list.html#pubs_m_R
http://pubs.usgs.gov/twri/twri4a3/

3 Basic use of R

applied to such data. However, there is a great deal of similarity betweenwater pollution
and air pollution (e.g. seasonal cycles). One of the authors (Hirsch) is responsible for
developing several important methods for analysing trends that are very widely used;
including in this document. The document is also very well written and applied in nature —
ideal reading for a background in statistical methods relevant to air pollution.
For those that really want to learn R itself, thenMatloff (2011) is well worth considering.

The book is full of useful examples about howRworks and how to use it.

3 Basic use of R
type citation("openair") for how to cite openair

3.1 Introduction
Rwill of course need to be installed on a computer and this is described in Appendix A.
The install procedure is straightforward forWindows systems (the operating systemmost
likely used by those with interests in openair). Using Rwill be a very different experience
for most users used to software such as spreadsheets. One of the key differences is that
data are stored as objects. These objects can takemany forms, but one of themost common
is called a data frame, which is widely used to store spreadsheet-like data. Before working
with such data, it is useful to see how simpler data are stored.

3.2 Use it as a calculator
To use R, one should type directly in the console shown in Figure 1. Later, it will be shown
when more than one line needs to be input, alternative methods can be used to send
commands to the console.
R can be used to do simplemaths; in this example type in ‘5 + 4’ and press return. The

[1] shows that this is the first (and only in this case) result.
5 + 4

[1] 9

The output (9) has a ‘[1]’ next to it showing it is the first (and only in this case) result. To
assign a value to a variable, in this case x, type

x <- 5

Often it is useful to recall previous commands that have been entered, perhapsmodify-
ing them slightly. To recall previous commands the up (↑) and down arrow (↓) keys can be
used.
To assign a variable to a value most R users will use the ‘assignment operator’ (<-).

However, most new users to R find this unnecessarily unusual. In this document wemostly
use <- but for most circumstances the =will work the sameway.

x

[1] 5

13

3 Basic use of R

Note! R is case sensitive
In the case above using a capitalX gives an error:

x * 5

[1] 25

X * 5

Error: object 'X' not found

It is often necessary tomodify a line that has been input previously (this is part of the
interactive strength of R). To recall the previous line(s) for editing use the up arrow (↑) on
the keyboard.
One of the very important features of R is that it considers ‘vectors’. In the example

above, x was a single integer 5. However, it can equally represent any sequenceof numbers.
In the example below, we are going to define two variables x and y to be samples of 10
random numbers between 0 and 1. In this case there is a special in-built function to
generate these numbers called runif.generate

random
numbers x <- runif(10)

y <- runif(10)

To see what x looks like, just type it in:
x

[1] 0.911943 0.273499 0.501274 0.591284 0.579416 0.003475 0.127328 0.652788
[9] 0.519716 0.177587

This is one of themost powerful features of R; it alsomakes it easier to code functions.
The ‘traditional’ way of doing this would be to have an array and loops, something like:

for i = 1 to 10 x(i) = runif(1) next

The R code is much neater and can also be extended tomatrices and arrays.
Another useful thing to do sometimes is to generate a sequence of numbers. Here the

functions seq and rep are very useful. We first show their basic use and then show a useful
example relevant tomonitoring data.
To generate a sequence of numbers between 1 and 10:generate a

sequence
numbers z <- seq(1:10)

z

[1] 1 2 3 4 5 6 7 8 9 10

To divide all these number by 10, simply type:
z/10

[1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

This code again highlights vectorised calculations in R: you need not treat each element
of z separately. For more information on selecting parts of vectors, and subsets of data in
general see (§5.2).
In fact, for this particular example you can just type z <- 1:10. Many other possibilities

14

3 Basic use of R

are also available. For example, to generate a sequence of numbers between 1 and 10
using 23 numbers (bit odd, but you get the idea!):

z <- seq(1, 10, length.out = 23)
z

[1] 1.000 1.409 1.818 2.227 2.636 3.045 3.455 3.864 4.273 4.682
[11] 5.091 5.500 5.909 6.318 6.727 7.136 7.545 7.955 8.364 8.773
[21] 9.182 9.591 10.000

The function rep on the other hand repeats numbers a certain number of times. For
example, to repeat 1, 10 times:repeating a

sequence of
numbers or
characters

rep(1, 10)

[1] 1 1 1 1 1 1 1 1 1 1

Now, these functions can be combined. A scenario is that you have a data set of concen-
trations exactly one year long and youwant the hour of the day (if you have the date/time
there are other ways to do this shown later). A year is 365×24 hours long (8760 hours).
What is needed is to repeat the sequence 0–23, 365 times. This is done by:

hour <- rep(seq(0, 23), 365)

Easy! There are loads of variations on this theme too. It’s the sort of thing that should
be easy but often is a pain to do in other software.
A very common thing to do in R is combine a series of numbers. This is done by concaten-

ating them. For example, if one wanted p to represent the numbers 1, 3, 5, 10:
p <- c(1, 3, 5, 10)
p

[1] 1 3 5 10

The use of c() is extremely common in R and is used in almost every analysis. One
example is when setting the axis limits in plots. A long-handway of doing this might be to
separately set the lower and upper ranges of the limits (e.g. x.lower = 0, x.upper = 100).
However, with the c command, it is more compactly written as xlim = c(0, 100).

3.3 Basic graph plotting
One of R’s strengths is the ease with which graphs can be plotted. Almost all graphs in R
use an “ink on paper” approach – once something is added it cannot be changed. Youwill
need to plot it again.
To plot x against y as a scatter plot, simply use the plot function.
You should end upwith something similar to Figure 2 (but not exactly the same, because

we are plotting random numbers).
Because R is mostly considered as a system for doing statistics, it should come as no

surprise that doing some basic statistics and plotting some basic graphs is easy. One
useful plot is a histogram. There is an in-built function called hist. Tomake it a bit more
interesting, we are first going to draw 1000 random samples from a normal distribution,
again the in-built function rnorm can do this for you, as shown for Figure 3.
The plot should look something like Figure 3. This should give you some idea that using

R can be very efficient and straightforward for basic plotting. Tomake a histogram in Excel
by contrast is pretty painful. Note also that the bin width size has been automatically
chosen— in this case to be 0.05.

15

3 Basic use of R

plot(x, y)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.

2
0.

4
0.

6
0.

8

x

y

Figure 2: Plot of 10 random numbers between 0–1.

z <- rnorm(1000)
hist(z)

Histogram of z

z

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
50

10
0

15
0

20
0

Figure 3:Histogram of 1000 random numbers drawn from a normal distribution.

3.4 Getting help
There are various ways to get help. For particular functions like plot, hist, seq etc.,
simply typehelp(plot)or?plot (orwhatever) tobringupa screen that lists all theoptions
of a function. Almost always shown are examples of use too. Failing that, try the R-project
website, choose ‘Search’ on the first page and then ‘R site search’. These web pages are
very useful because they contain questions asked by R-users and answered by R experts.
You need to read the ‘posting guide’ before sending question to this site — people supply
answers in their own time somake sure you have explored all avenues first.
To search for information in installed packages, help.search is useful e.g.
help.search("polar plot")

16

4 Using R to analyse air pollutionmonitoring data

4 Using R to analyse air pollutionmonitoring data
4.1 Getting data into R

So farwehave justmadeupour data using some in-built R functions. Amore likely scenario
is that you have a data file that you want to analyse. R has many powerful facilities for
importing data. However, we are going to keep things simple because it is worth getting
your data into a simple format in the first place. Datamore often than not is represented
as columns on a rectangular grid — and unfortunately is often in Excel with all of its
complexity of sheets and formatting. It is strongly recommended that you work with data in a
.csv format. The files are simple, small and easily read by a wide variety of software.

The importance of data preparation
Experience shows that it is well worth putting a lot of effort into making
sure your data are correct before you start analysing them. When you pre-
pare a file carry out some basic checks. For R it is advisable to have variable
names with no spaces. It is also more convenient to keep variable names in
lower case because it is more difficult to type in capital letters.
It is also convenient to keep your variables names simple because you may
need to refer to them lots. Also, we find it is a good idea to keep everything
in lower case letters, again because they are quicker to type.
A file containing real monitoring data fromMarylebone Road in London has been put

together. This is a ‘warts n’ all’ file and contains missing data — typical of that available
elsewhere. We have also put in some basic meteorological data (wind speed and direc-
tion). The file is called “example data long.csv”. This file contains a column representing
dates/times in the format dd/mm/yyyy HH:MM, which is very common in data sets of
monitoring data. The file is available from http://www.openair-project.org.
The easiest way to work with this file is first to set the working directory of R to be the

same as that where the file is. This is done using the File|Change dir. . . command in R.
To read the file in, type (or better still copy and paste this directly into R):Read in a csv

file ## note! - remember to change the directory
mydata <- read.csv("̃ /openair/Data/example data long.csv", header = TRUE)
mydata$date <- as.POSIXct(strptime(mydata$date, format = "%d/%m/%Y %H:%M",

"GMT"))

Note that the openair package has tools to make this easier — see Getting data into
openair . The information presented here shows how to do things using basic R functions.format

date-times This reads the file into something called a data.frame, which is themost commonway
in which R stores data (others include vectors, matrices and arrays).
An alternative if you want to bring up a dialog box that allows you to browse the file

system (and then format the date) is:
mydata <- read.csv(file.choose(), header = TRUE)
mydata$date <- as.POSIXct(strptime(mydata$date, format = "%d/%m/%Y %H:%M",

"GMT"))

Another neat way of getting data into R if you are interested in having a quick look at
data is to read data directly from the clipboard. If you are using Excel you can copy some
data (whichmay ormay not include column headers; better if it does) and read it into R
easily by:

17

http://www.openair-project.org

4 Using R to analyse air pollutionmonitoring data

mydata <- read.delim("clipboard", header = TRUE)

Which assumes that the data did have a header field. If not R will provide column names
like V1, V2 etc. and the option header = FALSE should be used instead.
Wewill come onto the second line in aminute. It is always useful to check to seewhat

has been loaded and using the summary command in R is one useful way to check:view a
summary of
the data summary(mydata)

date ws wd nox
Min. :1998-01-01 00:00:00 Min. :-0.2 Min. : 0 Min. : 0
1st Qu.:1999-11-14 15:00:00 1st Qu.: 2.6 1st Qu.:140 1st Qu.: 82
Median :2001-09-27 06:00:00 Median : 4.1 Median :210 Median : 153
Mean :2001-09-27 06:00:00 Mean : 4.5 Mean :200 Mean : 179
3rd Qu.:2003-08-10 21:00:00 3rd Qu.: 5.8 3rd Qu.:270 3rd Qu.: 249
Max. :2005-06-23 12:00:00 Max. :20.2 Max. :360 Max. :1144
NA's :626 NA's :219 NA's :2423
no2 o3 pm10 so2 co
Min. : 0.0 Min. :-1.0 Min. : -1.0 Min. :-2 Min. : 0.0
1st Qu.: 33.0 1st Qu.: 2.0 1st Qu.: 22.0 1st Qu.: 2 1st Qu.: 0.6
Median : 46.0 Median : 4.0 Median : 31.0 Median : 4 Median : 1.1
Mean : 49.1 Mean : 7.1 Mean : 34.4 Mean : 5 Mean : 1.5
3rd Qu.: 61.0 3rd Qu.:10.0 3rd Qu.: 44.0 3rd Qu.: 6 3rd Qu.: 2.0
Max. :206.0 Max. :70.0 Max. :801.0 Max. :63 Max. :19.7
NA's :2438 NA's :2586 NA's :2161 NA's :10034 NA's :1929
pm25
Min. : -1
1st Qu.: 13
Median : 20
Mean : 22
3rd Qu.: 28
Max. :398
NA's :8774

The summary function is extremely useful. It shows that there are 9 variables: date, ws,
wd It provides theminimum, maximum, mean, median, and the first and third quantiles.
It shows for example that NOx ranges from 0 to 1144 ppb and themean is 178.8 ppb. Alsoshown is something called NA’s, which aremissing data. For NOx there are 2423missingvalues for example. These missing values are very important and it is also important to
know how to deal with them. When R read the .csv file, it automatically assignedmissing
data the value NA.
Also note that the date is read in as a character string and R does not know it is a date.

Dealing properly with dates and times in any software can be very difficult and frustrating.
There are time zones, leap years, varying lengths of seconds, minutes, hours etc.; all in all
it is highly idiosyncratic.2 R does however have a robust way of dealing with dates and
times. In this case it is necessary to deal with dates and times and two functions are used
to convert the date to something recognised as such by R. The function strptime tells R
what format the data are in— in this case day/month/year hour:minute i.e. it ‘strips’ the
date out of the character string. In addition, R is told that the data are GMT. This allows
great flexibility for reading in dates and times in a wide range of formats. The as.POSIXct
function then converts this to a convenient format to workwith. This may appear to be
complicated, but it can be applied in the sameway to all files and once done, it is possible
to proceed without difficulty. The other need for storing dates/times in this way is to deal
with GMT/BST (or ‘daylight savings time’). Some of the functions in Part II use time zone
information to process the data, because, for example, emissions tend to vary by local time
2Just to emphasise this difficulty, note that a “leap second” will be added at the end of 2008 due to the
occasional correction needed because of the slowing of the Earth’s rotation.

18

4 Using R to analyse air pollutionmonitoring data

and not GMT. Note that the openair package will automatically do these conversions if
the data are in a format dd/mm/yyyy HH:MM.3
If you just want to knowwhat variables have been read in, it is easier to typeshow the

variable
names names(mydata)

[1] "date" "ws" "wd" "nox" "no2" "o3" "pm10" "so2" "co" "pm25"

To access a particular variable, one has to refer to the data frame name mydata and the
variable itself. For example, to refer to nox, youmust type mydata$nox. There are other
ways to do this such as attaching the data frame and using the with command, but this is
the basic way of doing it.
Now one can get some summary information on one variable in the data frame e.g.
summary(mydata$nox)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0 82 153 179 249 1140 2423

Missing data can have an important effect on various R functions. For example, to find
themeanNOx concentration use the function mean:missing data

are
represented as

NA (not
available) in R

mean(mydata$nox)

[1] NA

The result NA is because nox contains somemissing data. Therefore, it is necessary to
exclude them using the na.rm command:

mean(mydata$nox, na.rm = TRUE)

[1] 178.8

Often it is sensible (and easier) to remove all themissing data from a data frame:
newdata <- na.omit(mydata)

This makes a new data framewith all themissing data removed. However, wewill work
with the original data which includesmissing data.

4.2 More sophisticated plotting
Let’s have a look at a histogram of NO2 concentrations, shown in Figure 4.The plot is shown in Figure 4. Looks good, but it can easily be tidied up. It needs a new
title and x-axis caption. This is easy using some of the in-built options in the hist function
(Figure 5).
Ormaybe youwant to shade the bars (Figure 6). . .
Another very useful plotting function is a density plot using the density function (Fig-

ure 7). This has the advantage over the histogram of avoiding trying to select a bin width
and for some data can give amuch clearer indication of its distribution.

3The openair packagewill in time contain several functions tomake it easier to import data and deal with
dates and times.

19

4 Using R to analyse air pollutionmonitoring data

hist(mydata$no2)

Histogram of mydata$no2

mydata$no2

F
re

qu
en

cy

0 50 100 150 200

0
20

00
60

00
10

00
0

Figure 4:Histogram of NO2 concentrations atMarylebone Road.

hist(mydata$no2, main = "Histogram of nitrogen dioxide", xlab = "Nitrogen dioxide (ppb)")

Histogram of nitrogen dioxide

Nitrogen dioxide (ppb)

F
re

qu
en

cy

0 50 100 150 200

0
20

00
60

00
10

00
0

Figure 5:Histogram of NO2 concentrations atMarylebone Road—with better labels.

4.3 Plotting time series with different averaging times
This is one of themost useful things to dowith air pollution data. It can be a pain in some
software to plot time series data with different averaging times— try for example plotting
daily or weekly means in Excel. Now that we have a proper date format in R, we can do all
sorts of things. First we show the basic plot of hourly data using a line plot. This plots all
the data in its native format (hours), shown in Figure 8.

20

4 Using R to analyse air pollutionmonitoring data

hist(mydata$no2, main = "Histogram of nitrogen dioxide", xlab = "Nitrogen dioxide (ppb)",
col = "lightblue")

Histogram of nitrogen dioxide

Nitrogen dioxide (ppb)

F
re

qu
en

cy

0 50 100 150 200

0
20

00
60

00
10

00
0

Figure 6:Histogram of NO2 concentrations atMarylebone Road –with better labels andsome colour.

dens <- density(mydata$no2, na.rm = TRUE)
plot(dens, main = "Density plot of nitrogen dioxide", xlab = "Nitrogen dioxide (ppb)")

0 50 100 150 200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Density plot of nitrogen dioxide

Nitrogen dioxide (ppb)

D
en

si
ty

Figure 7:Density plot of NO2 concentrations atMarylebone Road.

21

4 Using R to analyse air pollutionmonitoring data

plot(mydata$date, mydata$nox, type = "l", xlab = "year", ylab = "Nitrogen oxides (ppb)")

1998 2000 2002 2004

0
40

0
10

00

year

N
itr

og
en

 o
xi

de
s

(p
pb

)

Figure 8:Hourly time series plot of NOx atMarylebone Road.

plot(mydata$date[1:500], mydata$nox[1:500], type = "l", xlab = "date",
ylab = "Nitrogen oxides (ppb)")

Jan 04 Jan 09 Jan 14 Jan 19

0
20

0
50

0

date

N
itr

og
en

 o
xi

de
s

(p
pb

)

Figure 9:Hourly time series plot of NOx atMarylebone Road – first 500 records.

Use functions in openair to flexibly aggregate data on different time
bases

The openair package has functions to calculate and plot data on almost any
time-averaging basis. See §(31.4) and §(17) for more details.
Say you just want to plot a section of the data — say the first 500 points. How do you do

this? Selecting subsets of data is another of the real strengths of R. Remember that the
variables are in vector form. Therefore, to select only the first 500 values of a variable x
you can type x[1:500], or values from the 300th to 400th data points x[300:400]. In the
code belowwe choose the first 500 of date values andNOx . The result is shown in Figure 9.Note also that R automatically adjusts the x-axis labels to day of themonth, rather than
year as before. Also note somemissing data before 4 January. This is the advantage of
keeping all the data and not removingmissing values. If we had removed the values, the
gap in data would not have been shown and there would have been a discontinuity. For
more information on selecting parts of a data frame and selecting by date, see (§5.2).
To plot the data over different averaging times requires that the data are summarised in

someway. This can seem to get quite complicated— because it is. Here we use a function

22

4 Using R to analyse air pollutionmonitoring data

calculate monthly means
means <- aggregate(mydata["nox"], format(mydata["date"], "%Y-%m"), mean,

na.rm = TRUE)

derive the proper sequence of dates
means$date <- seq(min(mydata$date), max(mydata$date), length = nrow(means))

plot the means
plot(means$date, means$nox, type = "l")

1998 2000 2002 2004

15
0

25
0

means$date

m
ea

ns
$n

ox

Figure 10:Monthly time series plot of NOx atMarylebone Road.

Table 1: Some commonly used date-time formats useful when averaging data.
Code function
%Y annual means
%m monthly means
%Y-%m monthly averages for whole time series
%Y-%j daily averages for whole time series
%Y-%W weekly averages for whole time series
%w-%H day of week – hour of day

called aggregate, which can summarise data in different ways. The code required to plot
monthly means is shown in Figure 10.
So what does this code do? The first line is a command that will summarise the data by

month and year. Note that we need to removemissing data from the calculations, hence
the na.rm option. To getmonthlymaximum values you simply replace the mean by max. We
then generate some dates that are as long as themonthly time series, means using the seq
function. This function generates data the same length as means, starting at the beginning
of the seriesmydata$date[1] andending at theendmydata$date[nrow(mydata)]. Finally,
a plot is produced; in this case without axes properly labelled shown in see Figure 10.
Now, let’s plot some daily averages. Here the averaging time is given as %j (meaning

decimal day of year; see strptime and Table 1 for more information on this), see Figure 11.
To plot annual mean use%Y andweekly means %U.
The aggregate function canworkwithmore than one column of data at a time. So, to

calculate monthly means of all values, the following code can be used:

23

4 Using R to analyse air pollutionmonitoring data

calculate daily means
means <- aggregate(mydata["nox"], format(mydata["date"], "%Y-%j"), mean,

na.rm = TRUE)

derive the proper sequence of dates
means$date <- seq(min(mydata$date), max(mydata$date), length = nrow(means))

plot the means
plot(means$date, means$nox, type = "l")

1998 2000 2002 2004

0
20

0
50

0

means$date

m
ea

ns
$n

ox

Figure 11:Daily time series plot of NOx atMarylebone Road.

means <- aggregate(mydata[-1], format(mydata[1], "%Y-%m"), mean, na.rm = TRUE)
head(means)

date ws wd nox no2 o3 pm10 so2 co pm25
1 1998-01 5.089 171.4 168.1 42.17 4.346 29.18 5.181 1.945 NaN
2 1998-02 4.259 216.7 283.9 58.32 2.486 40.21 9.649 2.904 NaN
3 1998-03 4.666 224.6 194.5 49.72 5.288 32.65 8.975 2.045 NaN
4 1998-04 4.198 206.4 177.0 47.93 8.815 28.87 6.597 1.780 NaN
5 1998-05 3.457 162.6 122.4 43.74 9.458 32.46 4.953 1.254 20.99
6 1998-06 4.932 219.1 196.8 47.13 5.507 32.98 6.299 2.045 20.00

In this code the mydata[-1] selects all columns in mydata, except the first column (which
is the date), and mydata[1] is the date column i.e. the onewewant to average by. Functions
of this type can be very useful, allowing quite complex summaries of data to be derived
with little effort.
In this case aggregate returns the year-month, which is not recognised as a date. Be-

cause we are averaging the data, it might be better to represent the data as the middle
of each month. We can paste the day onto the end of the year-month column and then
convert it to a Date object:

means$date <- paste(means$date, "-15", sep = "")
means$date <- as.Date(means$date)

openair has a flexible functions called timeAverage that makes aggregating data like
this much easier so it can be done in a single step for almost any averaging period (see
subsection 31.4).

4.3.1 Enhancing plots
This seems a good point at which to describe some of the enhancements that can bemade
to plots. There are numerousways inwhich plots can be enhanced and it is worth checking
help(plot) to see some of the options available. As an example, we are going to enhance
Figure 10 using the data means previously calculated.

24

4 Using R to analyse air pollutionmonitoring data

derive the proper sequence of dates
dates <- seq(mydata$date[1], mydata$date[nrow(mydata)], length = nrow(means))
plot(dates, means$nox, type = "b", lwd = 1.5, pch = 16, col = "darkorange2",

xlab = "year", ylab = "nitrogen oxides (ppb)", ylim = c(0, 310), main = "Monthly mean
nitrogen oxides at Marylebone Road.")
grid()

1998 2000 2002 2004

0
10

0
25

0

Monthly mean nitrogen oxides at Marylebone Road.

year

ni
tr

og
en

 o
xi

de
s

(p
pb

)

Figure 12:Monthly mean time series plot of NOx at Marylebone Road, with enhancedplotting options.

The different enhancements are shown separately on each line of the plotting code.
type = “b”plots points and lines, whichmakes it easier to see thatmonths are plotted lwd
= 1.5makes the line a bit thicker (1 is the default); pch = 16 is the code for a solid filled
circle (other shapes available too); col = “darkorange2”makes the plot line and shape
a different colour; ylim = c(0, 310) sets the lower and upper limits for the y-axis, and
finally grid() automatically adds grid lines to help navigate the plot. Other enhancements
weremade by adding a title etc. The result is shown in Figure 12.

4.4 Amore complicated example— plot construction
So far it has been possible to run only a few lines of code tomake the plots. This section
considers using many lines of code to design and make a dedicated plot. This example
shows one of the strengths of R compared with other plotting software: you are not
restricted by “off the shelf” plots. Weworkwith plotting time series data but want to put
a rather different plot together based on the average diurnal profile in concentration of
pollutant by day of the week. Plots of this type are very useful for showing how emissions
might change by hour of the day and day of the week.
Figure 13 shows that the NOx concentrations are higher during the weekdays andthat the weekday variation is very similar on each day. On a Saturday, concentrations

tend to peak beforemidday and rise slowly tomidnight. By contrast, concentrations are
relatively high in the early hours of themorning (probably due to traffic activity from late
night party-goers!) and peaks later in the afternoon. These types of patterns can very
often reveal important information about source characteristics – and R allows you to
investigate these.
The plot is put together in several parts:
1. First, mean values of NOx are calculated in the same way as shown previously. Inthis case the averaging period is %w-%H, which means average by day of the week
(0–6, 0 = Sunday, 1 =Monday . . .) and then by hour of day.

25

4 Using R to analyse air pollutionmonitoring data

2. A plot is generated of themeans. Themain effort involved here is tomake a decent
x-axis with appropriate labels. The plot option type = “n”means that no data are
actually plotted. This is chosen becausewewant to add someother features (notably
grid lines) first before we plot the data. This is just a neater way of doing things:
plotting grid lines on top of data looks worse. The option xaxt = “n” suppresses
the x-axis altogether. This is done because we want to make our own. Finally, we
chose some sensible names for the axis and title captions.

3. Next, some tick marks are added using the axis function. These are added every 24
hours starting at 1.

4. We then annotate the x-axis with day of theweek names. These are placed at the
middle of each day e.g. hour 13 for Sunday etc.

5. Some grid lines are added using the function abline. In this case, a sequence of
vertical lines are added (hence the v option). These are chosen to have a light grey
colour with the option col = “grey85”.

6. Finally, the data themselves are added as a linewith the function lines, with a colour
of darkorange2 and a line width of 2.

As an alternative to using grid lines to distinguish between different days, shading can
be useful too. Here, we shade alternate days with the rect function. See help(rect) for all
the options available.

4.5 Summarising time series data
There are some nice ways of quickly summarising data over different time scales including
day of year, month of year and day of week. Theway pollutant concentrations vary over
different time scales can provide some useful clues as to what sources are important.
Again, this is the sort of thing that can be tricky in other software. One of the most
useful; plots available is called a box and whisker plot, which is a very effective way of
summarising large amounts of data. Say for example, wewere interested to see howozone
concentrations vary bymonth of the year as shown in Figure 15.
The results shown in Figure 15 show several interesting features. The dark lines shows

themedian concentration, which peaks inMay. However, the highest hourly concentra-
tions are observed in August – presumably due to regional-scale photochemical pollution
episodes.
It is alsopossible to viewanentire series of data asmonthlymeans, as shown inFigure16.

This plot shows quite nicely that themedian and the peak concentrations ofNO2 increasedin 2003, which is now known to be due to increased emissions of primary NO2. Otheruseful summary functions include day of the week (%A) and year (%Y). There are many
possibilities for plotting here and it is suggested you try some of your own.

4.6 Relationships between variables
Exploring how variables are related to one another is a very useful thing to do, but often
trickywhen you have lots of variables and lots of data. At a basic level, a scatter plot of one
variable against another is useful. However, when you havemore than a few variables it
becomes quite an effort tomanually plot one against another. Luckily, R has some excellent
facilities to help you out; in particular the pairs function. We could just use the command
pairs(mydata) and this would plot each variable all other variables. Our data frame now

26

4 Using R to analyse air pollutionmonitoring data

calculate means
means <- aggregate(mydata["nox"], format(mydata["date"], "%w-%H"), mean,

na.rm = TRUE)

plot(means$nox, xaxt = "n", type = "n", xlab = "day of week", ylab = "nitrogen oxides
(ppb)",

main = "Nitrogen oxides at Marylebone Road by day of the week")

add some tick marks at 24 hr intervals
axis(1, at = seq(1, 169, 24), labels = FALSE)

add some labels to x-axis
days <- c("Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat")

loc.days <- seq(13, 157, 24) # location of labels on x-axis

write text in margin
mtext(days, side = 1, line = 1, at = loc.days)

add some grid lines
abline(v = seq(1, 169, 24), col = "grey85")

add the line
lines(means$nox, col = "darkorange2", lwd = 2)

10
0

15
0

20
0

25
0

Nitrogen oxides at Marylebone Road by day of the week

day of week

ni
tr

og
en

 o
xi

de
s

(p
pb

)

Sun Mon Tue Wed Thu Fri Sat

Figure 13:Day of week and hour of day plot of NOx atMarylebone Road.

has 11 columns, so this would be 121 plots! Furthermore, each variable is of length 65,533
long – so the plots would look busy to say the least.
We therefore take the opportunity to introduce a new function in R called sample.

What wewant to do is randomly select 500 lines from our data set, which is the function
sample(1:nrow(mydata), 500). What this does is randomly select 500 numbers from a
sample a long as our data set i.e. nrow(mydata). We also want to limit the columns chosen
to plot. Wewill plot date, ws, wd, nox, no2; which correspond to columns 11, 2, 3, 4
and 5. You can of course choose others, or more or less than 500 points. The code below is
one function but is spread over several lines for clarity. The plot is shown in Figure 17.
So what does this plot show? Well, if you look at the first column (date), the plots

essentially show the trend in the different variables i.e. no change in wind speed, slight dip
in wind direction, a decrease in NOx in 2001 and an increase in NO2 from around 2003.

27

4 Using R to analyse air pollutionmonitoring data

means <- aggregate(mydata["nox"], format(mydata["date"], "%w-%H"), mean,
na.rm = TRUE)

plot(means$nox, xaxt = "n", type = "n", ylim = c(60, 270), xlab = "day of week",
ylab = "nitrogen oxides (ppb)", main = "Nitrogen oxides at Marylebone Road by day of

the week")

axis(1, at = seq(1, 169, 24), labels = FALSE)

add some labels to x-axis
days <- c("Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat")
loc.days <- seq(13, 157, 24) # location of labels on x-axis

write text in margin
mtext(days, side = 1, line = 1, at = loc.days)
ylow <- 60
yhigh <- 270 # extent of shading in y direction
xleft <- seq(1, 145, 48) # left part of rectangles
xright <- xleft + 24 # right part of reactangles

draw rectangles
rect(xleft, ylow, xright, yhigh, col = "lightcyan", border = "lightcyan")

addline
lines(means$nox, col = "darkorange2", lwd = 2)

10
0

15
0

20
0

25
0

Nitrogen oxides at Marylebone Road by day of the week

day of week

ni
tr

og
en

 o
xi

de
s

(p
pb

)

Sun Mon Tue Wed Thu Fri Sat

Figure 14:Day of week and hour of day plot of NOx atMarylebone Road, with shading.

They also show that concentrations of NOx andNO2 do not changemuchwith wind speed(street canyon effects) and that the highest concentrations are recorded when the wind is
westerly. These plots can be extremely useful and are worth exploring in different ways.

28

4 Using R to analyse air pollutionmonitoring data

plot(as.factor(format(mydata$date, "%m")), mydata$o3)

01 03 05 07 09 11

0
10

20
30

40
50

60
70

Figure 15:Monthly box andwhisker plot of O3 atMarylebone Road.

plot(as.factor(format(mydata$date, "%Y-%m")), mydata$no2, col = "lightpink")

1998−01 1998−10 1999−07 2000−04 2001−01 2001−10 2002−07 2003−04 2004−01 2004−10

0
50

10
0

15
0

20
0

Figure 16: Yearly-monthly box andwhisker plot of NO2 atMarylebone Road.

29

4 Using R to analyse air pollutionmonitoring data

pairs(mydata[sample(1:nrow(mydata), 500), c(1, 2, 3, 4, 5)], lower.panel = panel.smooth,
upper.panel = NULL, col = "skyblue3")

1998 2002

19
98

20
02 date

0
2

4
6

8
12

ws

0
10

0
20

0
30

0

wd

0
20

0
40

0
60

0

nox

1998 2002

0
40

80
12

0

0 2 4 6 8 12 0 100 200 300 0 200 400 600 0 40 80 120

0
40

80
12

0

no2

Figure 17: Pairs plot for 500 randomly selected hours of data fromMarylebone Road.

30

5 General use of R— advice and examples

5 General use of R— advice and examples
5.1 Data input and output

Getting data into and out of R is an obvious requirement. There aremany options for doing
so, but we only cover some of the commonmethods in this section.

5.1.1 Data import
Sometimes it is useful to input just a few bits of data where it is unnecessary to import
from a file. This is simply done using the c function:

small <- c(1, 5, 10, 16)
small

[1] 1 5 10 16

More commonly it is necessary to import data from a file. As has been discussed before
it is best to keep the format of such files as simple as possible e.g. coma-delimited (.csv) or
text (.txt). You can use R to list files in a particular directory. Usually a user would have set
a ‘working directory’, and all file commandswill relate to that (in theWindows version of R,
go to File menu and choose Change Dir . . . It is also possible to set working directories with
a command e.g.

setwd("̃ /openair/Documentation")

Or if youwant to knowwhat the current working directory is:
getwd()

[1] "C:/Users/david/openair/Documentation"

Rather than using an external program to list files, you can do that in R too (in this case
using the ‘pattern’ option to list only csv files:

list.files(pattern = ".csv")

[1] "example data long.csv" "f-no2 input.csv" "hour-day.csv"
[4] "import.aurn.csv.tex"

Nowwe have a working directory set it is possible just to refer to the file name and not
the path. So, to import the file ‘hour-day.csv’ we can:

hour.day <- read.csv("hour-day.csv", header = FALSE)
head(hour.day)

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21
1 15 27 32 17 21 11 15 32 29 21 25 32 42 34 31 44 63 71 59 34 29
2 31 19 25 25 21 32 38 78 109 128 105 88 86 86 94 97 NA 176 208 126 86
3 59 31 29 29 31 34 55 65 130 134 113 107 117 115 126 113 103 88 92 50 31
4 15 13 10 17 19 31 44 53 126 128 96 71 103 82 90 94 120 97 139 94 74
5 53 31 25 31 21 46 53 82 162 174 149 136 113 126 120 157 201 220 174 149 92
6 73 52 42 42 29 34 52 59 97 122 204 269 323 285 248 193 264 254 241 183 124
V22 V23 V24
1 29 25 36
2 111 92 113
3 36 21 27
4 67 65 59
5 109 134 86
6 97 92 55

31

5 General use of R— advice and examples

In this case the data did not have a header line and we told R not to expect one. R
automatically labels the fields V1, V2 . . .
If the file was tab-delimited then the read.table function should be used (read.csv is

a version of read.table).
One potentially useful capability is the direct reading of data over the internet. For

example, we have example data on aweb server, and this can be read directly just like a file
on a computer file system:

test.data <-
read.csv("http://www.openair-project.org/CSV/OpenAir_example_data_long.csv",

header = TRUE)

This capability might be useful for making data available for anyone to access easily.

5.1.2 Data export
Exporting data can also take a number of forms. A common issues is exporting a data
frame(s) as a csv file.

write.csv("exportedData.csv", row.names = FALSE)

To save data in an ‘R format’ (.RData file), it is necessary to use the save function. If, for
example there was a data frame called ‘test.data’, this can be save directly:

save(test.data, file = "testData.RData")

in fact several objects can be saved at one in this way:
save(test.data, more.data, file = "testData.RData")

To load this data back into R, use the load function:
load("testData.RData")

5.2 Selecting and replacing parts of vectors and data frames
Selecting parts of a data frame is one of the more useful things that one can learn. This
often causes new users lots of difficulties, in part because of the way variables are stored
in R. Earlier it was seen that in the data frame mydata, one could refer to all nox values
simply as mydata$nox. What if one just wanted to select parts of this large data frame?
Here are some examples of the sorts of things you might want to do, and in each case
we read data into a new data frame called subdata4. We first consider various ways of
selecting parts of vectors.
Consider the vector x defined as integers 1, 4, 5, 18, 22, 3, 10, 33,−2, 0.
x <- c(1, 4, 5, 18, 22, 3, 10, 33, -2, 0)

To select the 4th element, we use the square brackets [] to subsample:
x[4]

[1] 18

To select the 3rd to 6th integers:
4Youmight not always wish tomake a new data frame because it will take up extramemory –many of the
examples shown can be done “on the fly”.

32

5 General use of R— advice and examples

x[3:6]

[1] 5 18 22 3

To select everything except the first and second value, elements can be omitted using
the− sign.

x[c(-1, -2)]

[1] 5 18 22 3 10 33 -2 0

Values greater than 5:
x[x > 5]

[1] 18 22 10 33

The indexes corresponding to integers > 5 can be found using the which command. This
basically finds the location of numbers in a vector that meet a certain criterion. In this
example, the fourth element is 18. This is a very useful function for subsetting.

which(x > 5)

[1] 4 5 7 8

To select a specific value it is necessary to use the double = sign i.e.
x[x == 18]

[1] 18

It is also easy to reverse a sequence of numbers, which is useful onmany occasions:
rev(x)

[1] 0 -2 33 10 3 22 18 5 4 1

The next thing to do is consider how to replace parts of a vector. This is something that
is often necessary when preparing data. To replace the−2 by 0:

x[x == -2] <- 0
x

[1] 1 4 5 18 22 3 10 33 0 0

Note that all the usual operators such as> can be used here.
Next we are going to select different parts of the data frame mydata. This can bemore

complicated because the data comprise both rows and columns. Select the first 500 rows
of data. This selects rows 1 – 500 and the blank space after the commameans “select all
columns” i.e. all variables:

subdata <- mydata[1:500,]

One can check the number of rows selected:
nrow(subdata)

[1] 500

Select a few variables from a data frame. Here the function subset is easy to use. We
select just the nox and no2 data. Note that when using this command, one does not need

33

5 General use of R— advice and examples

to use the $ operator, whichmakes selecting a bit easier to see.the subset
function is

very useful in
R

subdata <- subset(mydata, select = c(nox, no2))

If one wanted to select all nox, no2 and date values where nox concentrations were
greater than 600 ppb:

subdata <- subset(mydata, nox > 600, select = c(nox, no2, date))

Selecting by date is very useful but a bit more complicated. However, once learnt it is
extremely flexible and useful. We want to select all nox, no2 and date values for 2004,
although any start/end time can be used. We start by defining a start and end date, then
carry out the actual selection. In this example, wemust first convert our date (which is in
character format) into a date/time format that R understands. Note that dates/times in
R conventionally work in a hierarchical way (biggest to smallest component). Therefore
“2004-02-03 00:00” is the 3rd of February and not the 2ndMarch. In most cases dates
would have been read in and converted appropriately anyway, but in this particular case
we need to specify a particular date. The conversion from character string to a recognised
date/time in R is done using the as.POSIXct function. This may seem complicated, but
once learnt is both convenient and powerful. The openair packagemakes this much easier
— see (§31.1) for more details.

start.date <- as.POSIXct("2004-01-01 00:00", tz = "GMT")
end.date <- as.POSIXct("2004-12-31 23:00", tz = "GMT")
subdata <- subset(mydata, date >= start.date & date <= end.date, select = c(date,

nox, no2))

One can easily check what this subset looks like the the functions head and tail, which
give the first and last few lines of a data frame:View the first

or last few
lines of a data

frame
head(subdata)

date nox no2
52585 2004-01-01 00:00:00 98 38
52586 2004-01-01 01:00:00 141 62
52587 2004-01-01 02:00:00 159 56
52588 2004-01-01 03:00:00 97 44
52589 2004-01-01 04:00:00 60 26
52590 2004-01-01 05:00:00 64 31

and,
tail(subdata)

date nox no2
61363 2004-12-31 18:00:00 114 53
61364 2004-12-31 19:00:00 183 67
61365 2004-12-31 20:00:00 206 69
61366 2004-12-31 21:00:00 237 73
61367 2004-12-31 22:00:00 232 68
61368 2004-12-31 23:00:00 212 68

Another useful way of selecting subsets is using the %in% (or match) function. Some
examples are given belowwith dates.selecting

different time
periods

34

5 General use of R— advice and examples

subdata <- subset(mydata, format(date, "%Y") %in% 1998)

select 1998 and 2005
subdata <- subset(mydata, format(date, "%Y") %in% c(1998, 2005))

select weekends
subdata <- subset(mydata, format(date, "%A") %in% c("Saturday", "Sunday"))

This function is very useful for selecting subsets of data where there aremultiple search
criteria. For example, if a data frame had a field such as site name and the aimwas to select
data from several sites, this would be a goodway to do it.selecting

columns based
on characters

in them

It is sometimes useful to select columns (or rows) of a data frame based on their names.
One extremely powerful command in R is grep. grep does character matching. It is
potentially useful in numerous circumstances, but we only consider a simple case here.
Say, for example we had a very large data framewith 50 column names, but we only want
to extract those with the characters ‘nox’ in. We could search through and find those
columns by number and refer to them in that way— but that requires a lot of manual work
and has lots of potential to go wrong. In the example below we create a simple dummy
data frame as an example.

test.dat <- data.frame(lond.nox = 1, lond.no2 = 3, nox.back = 4, no2.back = 1)
test.dat

lond.nox lond.no2 nox.back no2.back
1 1 3 4 1

First, for information we can print the names of the data frame:
names(test.dat)

[1] "lond.nox" "lond.no2" "nox.back" "no2.back"

To find those names that contain the character string ‘nox’ we use grep:
grep(pattern = "nox", names(test.dat))

[1] 1 3

So, columns 1 and 3 contain the character string ‘nox’. We can put this altogether and
do it in one line to select those columns in the data frame that contain ’nox’:

sub.dat <- test.dat[, grep(pattern = "nox", names(test.dat))]
sub.dat

lond.nox nox.back
1 1 4

The grep command is potentially useful for selecting pollutants to plot in openair plots
e.g. to choose any columnwith ‘pm’ (PM10 and PM2.5) in it:

timePlot(mydata, pollutant = names(mydata)[grep(pattern = "pm", names(mydata))])

5.3 Combining and cleaning up files
So far the emphasis has been onmanually importing a single .csv file to a data frame. Often
withmonitoring data there are numerous files all in the same format that somehow need
to be read andmerged. R has some very powerful and convenient ways of dealing with
this situation and only the simplest case is shown here. The scenario is that you have loads

35

5 General use of R— advice and examples

of .csv files in a directory, all the same headings (although not necessarily so) and the aim
is to read and combine them all. This can be done using the code below.reading in lots

of files path.files <- "D:\\temp\\" # directory containing files
test.data <- lapply(list.files(path = path.files, pattern = ".csv"), function(.file)
read.csv(paste(path.files,

.file, sep = ""), header = TRUE))
test.data <- do.call(rbind, test.data)

There are a few things to note here. In R forWindows, file paths are shown using ‘\\’.
The function list.fileswill search for files (in this case .csv) in the D:\Temp. In the code
above it is assumed a header is also present. For more refined searching see help(list.files).
The lapply function is extremely useful in R and can help avoid looping through data. In
this case the function function(.file) is applied to the list of file names/paths supplied
by list.files. This is a neat way of applying a functionwithout knowing beforehand how
many files there are. The traditional way of doing it would be to have a loop such as for i
= 1 to nwhere nwould be the number of files.
Note, different numbers of columns can also be dealt with using the rbind.fill func-

tion from the reshape2 package as described below. In this case, the do.call(rbind,
test.data)would bemodified to do.call(rbind.fill, test.data).
A common task is combining different files into one for processing. First we consider the

scenario of a file with air pollutionmeasurements and another withmeteorological data.
The aim is to combine them into one data frame. Rather than import data, we generate it
instead. The first is a data frame called airpolwith 1 day of data at the beginning of 2007
with pollutants NOx and SO2. The other is a meteorological data set, with the same datesbut with wind speed and direction.combine two

data frames airpol <- data.frame(date = seq(as.POSIXct("2007-01-01"), by = "hours",
length = 24), nox = 1:24, so2 = 1:24)

met <- data.frame(date = seq(as.POSIXct("2007-01-01"), by = "hours", length = 24),
ws = rep(1, 24), wd = rep(270, 24))

You can check the contents of these data frames:
head(airpol)

date nox so2
1 2007-01-01 00:00:00 1 1
2 2007-01-01 01:00:00 2 2
3 2007-01-01 02:00:00 3 3
4 2007-01-01 03:00:00 4 4
5 2007-01-01 04:00:00 5 5
6 2007-01-01 05:00:00 6 6

head(met)

date ws wd
1 2007-01-01 00:00:00 1 270
2 2007-01-01 01:00:00 1 270
3 2007-01-01 02:00:00 1 270
4 2007-01-01 03:00:00 1 270
5 2007-01-01 04:00:00 1 270
6 2007-01-01 05:00:00 1 270

To combine them, use the merge function:

36

5 General use of R— advice and examples

test.data <- merge(airpol, met)
head(test.data)

date nox so2 ws wd
1 2007-01-01 00:00:00 1 1 1 270
2 2007-01-01 01:00:00 2 2 1 270
3 2007-01-01 02:00:00 3 3 1 270
4 2007-01-01 03:00:00 4 4 1 270
5 2007-01-01 04:00:00 5 5 1 270
6 2007-01-01 05:00:00 6 6 1 270

When called like this the merge function combines data frames only where both had
data. So, for example, if the met data frame only had the first 12 hours of 2007, merging
would produce a file with only 12 hours i.e. where theymatch (a natural join in database
terminology). The behaviour can be changed by selecting various options in merge. Fol-
lowing on from the previous example, the option all could have been set to TRUE, thus
ensuring all records from each data framewould be combined—with themissing 12 hours
in the met data frame included as NA. Type help(merge) to see the details. Functions of
this type can save lots of time aligning various time series in spreadsheets.
Note, that given a data framewithmultiple air pollution sites and a column called “site”

(i.e. values for the field “date” are repeated the same number of times there are numbers
of sites) it is easy to merge a singlemeteorological data set. This is the type of analysis
where several air quality sites in a region are associated with a single meteorological data
set. Given a data frame “aq” with multiple sites in a format like “date”, “nox”, “site” and
a meteorological data set “met” in the form something like “date”, “ws”, “wd” then the
merging is done by:

all.data <- merge(aq, met, by = "date", all = TRUE)

This code ensures that for each site for a particular date/time there are associated
meteorological values. In other words, it is not necessary to think about separately joining
meteorological andair quality data for each individual air quality site. See (§9) for scenarios
where doing this may be useful, such as importing data for multiple AURN sites from the
UK air quality archive.
Sometimes it is necessary to combine data frames that have the same field names. For

example, data from twomonitoring sites thatmeasure the same pollutants. In the example
below, we make two copies of the data frame airpol and name them site1 and site2,
respectively. Normally, of course, the data frameswould contain different data, perhaps
spanning different time periods. A new data frame is made using the merge function but
with additional options set. Now, we explicitly state that wewant tomerge on the date
field (by = "date"). In order to tell the NOx and SO2 fields apart, suffixes are used. Theresulting data frame has now beenmerged and the NOx from site1 is called nox.st1 etc.

37

5 General use of R— advice and examples

site1 <- airpol
site2 <- airpol

both <- merge(site1, site2, by = "date", suffixes = c(".st1", ".st2"),
all = TRUE)

head(both)

date nox.st1 so2.st1 nox.st2 so2.st2
1 2007-01-01 00:00:00 1 1 1 1
2 2007-01-01 01:00:00 2 2 2 2
3 2007-01-01 02:00:00 3 3 3 3
4 2007-01-01 03:00:00 4 4 4 4
5 2007-01-01 04:00:00 5 5 5 5
6 2007-01-01 05:00:00 6 6 6 6

A problem that is often encountered is combining files for different years, perhaps with
different numbers of columns. We consider the slightly more difficult latter situation;
although the former one is tackled in the same straightforward way. This situation can
arise frequentlywithmonitoring data. For example, in year 1, two pollutants aremeasured
(sayNOx andNO2), then in year2 another pollutant is addedas themonitoring is expanded.In year 2 data are available for NOx , NO2 and PM10. This is a straightforward enoughproblem to deal with but can be surprisingly frustrating and time consuming to do in
spreadsheets (particularly if the column order changes). However, help is at handwith the
merge function. Given the situationmentioned, mergewill deal with this:

make some data
year1 <- data.frame(date = seq(as.POSIXct("2007-01-01"), by = "hours",

length = 24), nox = 1:24, so2 = 1:24)
year2 <- data.frame(date = seq(as.POSIXct("2008-01-01"), by = "hours",

length = 24), nox = 1:24, so2 = 1:24)
test.data <- merge(year1, year2, all = TRUE)
head(test.data)

date nox so2
1 2007-01-01 00:00:00 1 1
2 2007-01-01 01:00:00 2 2
3 2007-01-01 02:00:00 3 3
4 2007-01-01 03:00:00 4 4
5 2007-01-01 04:00:00 5 5
6 2007-01-01 05:00:00 6 6

In this example, year1 contains hourly data for all of 2007 for NOx and NO2, and year2contains hourly data for all of 2008 for NOx , NO2 and PM10. The data frame test.datathen contains two years of data and has all variables present. For year 1where there are
no PM10 data, these data are shown asmissing i.e. NA.Another useful application of the merge function is to fill in gaps due tomissing data. The
scenario is that you have a file (say a year long of hourly data), but some lines aremissing.
This sort of situation arises frequently and can be time consuming to sort out. What is
needed is to ‘pad out’ the file and fill in the gaps with themissing dates and set the other
fields tomissing (NA, in R-speak). To show this, we first deliberately remove 2 of the hours
from the airpol data frame. We then create a data frame with all the hours (note that
only 24 are used here, but it can of course be any length), then the data aremerged:padding-out

missing hours

38

5 General use of R— advice and examples

airpol <- airpol[-c(2, 3),] # select everything except record 2 and 3
create all the dates that should exist
all.dates <- data.frame(date = seq(as.POSIXct("2007-01-01"), by = "hours",

length = 24))
merge the two
test.data <- merge(all.dates, airpol, all = TRUE)
head(test.data)

date nox so2
1 2007-01-01 00:00:00 1 1
2 2007-01-01 01:00:00 NA NA
3 2007-01-01 02:00:00 NA NA
4 2007-01-01 03:00:00 4 4
5 2007-01-01 04:00:00 5 5
6 2007-01-01 05:00:00 6 6

Themissing hours are thus inserted, but the variables themselves are set tomissing.
Finally (and not surprisingly) a package already exists that does this for you. The

reshape2 package can manipulate data in very flexible ways. However, the function
rbind.fill is particularly useful if you have lots of different data frames to combine
because merge can only merge two data frames at once. Note you can download this
package fromCRAN.

library(reshape2)
test.data <- rbind.fill(year1, year2)

interpolate
missing data Sometimes it is useful to fill in missing data rather than igonore it. Here, we show two

options from the zoo (zero-ordered observations) package. The first function na.locf
will fill missing data with the value of the last non-missing data point. To do a linear
interpolation between points, the na.locf function should be used:

library(zoo)
make some data with missing values
a <- c(1, NA, NA, NA, 3, NA, 18, NA, NA, 20)
show data
a

[1] 1 NA NA NA 3 NA 18 NA NA 20

fill with last non-missing point
na.locf(a)

[1] 1 1 1 1 3 3 18 18 18 20

interpolate missing points
na.approx(a)

[1] 1.00 1.50 2.00 2.50 3.00 10.50 18.00 18.67 19.33 20.00

There are various other options that can be used with these functions, which can be
considered by typing help(zoo). These functions can also be applied to data frames (or
columns of). Say wewant to interpolate all themissing NOx concentrations:

mydata$nox <- na.approx(mydata$nox, na.rm = FALSE)

Note that the na.rm = FALSE option ensures that trailing NAs are not removed, making
the number of records the same as the original data. The code abovewould replace the
NOx concentrations. If preferred, a new column could bemade, in this case called nox.all:

39

5 General use of R— advice and examples

mydata$nox.all <- na.approx(mydata$nox, na.rm = FALSE)

Once data are imported into R – say by loading a .csv file into a data frame, there are
often tasks that need to be carried out to alter the data before processing it. Some of these
common tasks are considered in this section.
One of themost immediate tasks with air pollution data is to convert the date/time field

into something understood by R and this has already been discussed.changing
variable
names

Next, it may be necessary to change the name of a variable. To list the existing variables
names:

names(mydata)

[1] "date" "ws" "wd" "nox" "no2" "o3" "pm10"
[8] "so2" "co" "pm25" "nox.all"

You can also refer to a single column name. In the code below, we show an example of
how to change one of the names (in this case nox) to nitrogen.oxides.

names(mydata)[4] # display name of 4th column (nox)

[1] "nox"

names(mydata)[4] <- "nitrogen.oxides" # change the name
names(mydata) # show new names

[1] "date" "ws" "wd" "nitrogen.oxides"
[5] "no2" "o3" "pm10" "so2"
[9] "co" "pm25" "nox.all"

change it back again
names(mydata)[4] <- "nox"

To changemore than one name at a time (say the 4th and 5th column names):
names(mydata)[c(4, 5)] <- c("new1", "new2")

If you have imported data that has lots of upper case names and youwant them all in
lower (because they are easier to refer to), use the tolower function e.g.

names <- c("NOx", "PM10") #make some upper case names
tolower(names)

[1] "nox" "pm10"

If you import data that has rather verbose descriptions, which become a pain to refer
to, you can abbreviate them. In this example, we have two site names and the aim is to
abbreviate them using only two letters.

names <- c("North Kensington", "Marylebone Road")
abbreviate(names, 2)

North Kensington Marylebone Road
"NK" "MR"

There is potential for this going wrong, if, for example two of the names were very
similar:

40

5 General use of R— advice and examples

names <- c("North Kensington roadside", "North Kensington background",
"Marylebone Road")

abbreviate(names, 2)

North Kensington roadside North Kensington background
"NKr" "NKb"
Marylebone Road
"MR"

However, R is clever enough to work this out, and uses an extra letter as necessary. The
abbreviate function can be very effective at simplifying files for processing and generally
makes logical simplifications. Note that in the examples above, one could have chosen to
abbreviate the names to any length.
Data can easily be ordered and this might be necessary if for example, the date field was

not sequential in time. An example is:
mydata <- mydata[order(mydata$date),]

whichkeepsdata in the samedata framemydatabut ensures that all thedata areordered
by date.

5.4 Reshaping data
Data are stored in a wide variety of ways and it is often necessary to do some datamanipu-
lation in order to analyse or plot data. This section distinguishes between twomain storage
options: stacked or column format (narrow or wide). By way of an example, consider the
simple case of two sites eachmeasuring NOx . Oneway of storing all this data in a singledata framewould be to have columns: “date”, “site1.nox”, “site2.nox”. An alternative would
be to stack the data and have columns “date”, “nox”, “site”. For such a simple example there
isn’t much difference between the two options. But what if there were 10, 20 or 100 sites?
Having columns “site1.nox”, “site2.nox” . . .would get rather tedious, whereas the stacked
data would still only have three columns.
For openair functions there is a big advantage in stacking data like this, and all the

openair import functions do this. This is because it then becomes easy to plot any number
of quantities without referring to them individually and without knowing how many
there are. This will become clearer as openair functions are used, but imagine trying
to plot NOx at 10 sites using the two different approaches using the openair timePlotfunction:
For column format:
timePlot(mydata, pollutant = c("site1.nox", "site2.nox", "site3.nox",

..., "site10.nox"))

And stacked data:
timePlot(mydata, pollutant = "nox", type = "site")

The latter example works for any number of sites without having to know the number.
So how can data be re-shaped to get it into the appropriate format? This is best

answeredwith an example using the reshape2 package that is loadedwith openair. We’ll
work with the first 3 lines of mydata.

41

5 General use of R— advice and examples

select first 3 lines
thedata <- head(mydata, 3)
thedata

date ws wd nox no2 o3 pm10 so2 co pm25 nox.all
1 1998-01-01 00:00:00 0.60 280 285.0 39 1 29 4.723 3.373 NA 285.0
2 1998-01-01 01:00:00 2.16 230 354.3 NA NA 37 NA NA NA 354.3
3 1998-01-01 02:00:00 2.76 190 423.7 NA 3 34 6.830 9.602 NA 423.7

The reshape2 package comes with twomain functions melt and dcast. melt organises
data according to ‘measured’ and ‘id’ variables. In our example themeasured values are
the pollutants and id is the date. It is possible to list either themeasured or id values, but
in this case it is easier with id because there is only one:

library(reshape2)
library(plyr)
thedata <- melt(thedata, id.vars = "date")
thedata

date variable value
1 1998-01-01 00:00:00 ws 0.600
2 1998-01-01 01:00:00 ws 2.160
3 1998-01-01 02:00:00 ws 2.760
4 1998-01-01 00:00:00 wd 280.000
5 1998-01-01 01:00:00 wd 230.000
6 1998-01-01 02:00:00 wd 190.000
7 1998-01-01 00:00:00 nox 285.000
8 1998-01-01 01:00:00 nox 354.333
9 1998-01-01 02:00:00 nox 423.667
10 1998-01-01 00:00:00 no2 39.000
11 1998-01-01 01:00:00 no2 NA
12 1998-01-01 02:00:00 no2 NA
13 1998-01-01 00:00:00 o3 1.000
14 1998-01-01 01:00:00 o3 NA
15 1998-01-01 02:00:00 o3 3.000
16 1998-01-01 00:00:00 pm10 29.000
17 1998-01-01 01:00:00 pm10 37.000
18 1998-01-01 02:00:00 pm10 34.000
19 1998-01-01 00:00:00 so2 4.723
20 1998-01-01 01:00:00 so2 NA
21 1998-01-01 02:00:00 so2 6.830
22 1998-01-01 00:00:00 co 3.373
23 1998-01-01 01:00:00 co NA
24 1998-01-01 02:00:00 co 9.602
25 1998-01-01 00:00:00 pm25 NA
26 1998-01-01 01:00:00 pm25 NA
27 1998-01-01 02:00:00 pm25 NA
28 1998-01-01 00:00:00 nox.all 285.000
29 1998-01-01 01:00:00 nox.all 354.333
30 1998-01-01 02:00:00 nox.all 423.667

whichmakes two columns: “variable” (pollutant name) and “value”.
It is possible to go from this “long” format back to wide:
thedata <- dcast(thedata, ... ˜ variable)

Anything to the right of∼will make new columns for each unique value of “variable”.
Imagine nowwe have data from two sites that is stacked (first we’ll make some):

42

5 General use of R— advice and examples

site1 <- thedata
add column with site name
site1$site <- "site1"
site1

date ws wd nox no2 o3 pm10 so2 co pm25 nox.all site
1 1998-01-01 00:00:00 0.60 280 285.0 39 1 29 4.723 3.373 NA 285.0 site1
2 1998-01-01 01:00:00 2.16 230 354.3 NA NA 37 NA NA NA 354.3 site1
3 1998-01-01 02:00:00 2.76 190 423.7 NA 3 34 6.830 9.602 NA 423.7 site1

site2 <- thedata
site2$site <- "site2"
site2

date ws wd nox no2 o3 pm10 so2 co pm25 nox.all site
1 1998-01-01 00:00:00 0.60 280 285.0 39 1 29 4.723 3.373 NA 285.0 site2
2 1998-01-01 01:00:00 2.16 230 354.3 NA NA 37 NA NA NA 354.3 site2
3 1998-01-01 02:00:00 2.76 190 423.7 NA 3 34 6.830 9.602 NA 423.7 site2

combine all the data
alldata <- rbind.fill(site1, site2)
alldata

date ws wd nox no2 o3 pm10 so2 co pm25 nox.all site
1 1998-01-01 00:00:00 0.60 280 285.0 39 1 29 4.723 3.373 NA 285.0 site1
2 1998-01-01 01:00:00 2.16 230 354.3 NA NA 37 NA NA NA 354.3 site1
3 1998-01-01 02:00:00 2.76 190 423.7 NA 3 34 6.830 9.602 NA 423.7 site1
4 1998-01-01 00:00:00 0.60 280 285.0 39 1 29 4.723 3.373 NA 285.0 site2
5 1998-01-01 01:00:00 2.16 230 354.3 NA NA 37 NA NA NA 354.3 site2
6 1998-01-01 02:00:00 2.76 190 423.7 NA 3 34 6.830 9.602 NA 423.7 site2

Nowwe have data that is stacked— but how dowe get it into column format?
this time date AND site are the id variables
library(reshape2)
alldata <- melt(alldata, id.vars = c("site", "date"))
want unique combinations of site AND variable
alldata <- dcast(alldata, ... ˜ site + variable)
alldata

date site1_ws site1_wd site1_nox site1_no2 site1_o3 site1_pm10
1 1998-01-01 00:00:00 0.60 280 285.0 39 1 29
2 1998-01-01 01:00:00 2.16 230 354.3 NA NA 37
3 1998-01-01 02:00:00 2.76 190 423.7 NA 3 34
site1_so2 site1_co site1_pm25 site1_nox.all site2_ws site2_wd site2_nox
1 4.723 3.373 NA 285.0 0.60 280 285.0
2 NA NA NA 354.3 2.16 230 354.3
3 6.830 9.602 NA 423.7 2.76 190 423.7
site2_no2 site2_o3 site2_pm10 site2_so2 site2_co site2_pm25 site2_nox.all
1 39 1 29 4.723 3.373 NA 285.0
2 NA NA 37 NA NA NA 354.3
3 NA 3 34 6.830 9.602 NA 423.7

These functions are very useful for getting data into the right shape for analysis.

5.5 Example: converting hour-day data to column format
In this example we deal with a common problem inmanipulating data – reformatting data
in one format to another. Often data are stored as rows representing days and columns
representing hours. This is often a format used by AEA for AURN data. However, this
example highlights amore general requirement to reformat data.

43

5 General use of R— advice and examples

The aim is to convert the 24 × 365 “matrix” of data to a single column of data. An
example file is provided called “hour-day.csv”. Tomake it simple the file only contains
hourly data with no column headings (hour of day) or row names (days). Fortunately there
are some built-in functions available in R that make the reformatting of these data easy:

nox <- read.csv("̃ /openair/Data/hour-day.csv", header = FALSE)
nox <- as.data.frame(t(nox))
nox <- stack(nox)
nox <- nox$values

In the code above, the data are first read in— note the option header = FALSE in this
case. Next, the data are transposed using the t (transpose) function, which produces a
matrix of data and transposes the rows/columns. Transposing the data ensures that the
hours are now in columns. Note that this operation instead of representing hours in rows,
puts them into 365 columns. The columns can now be stacked on top of each other. We
convert thematrix back to a data framewith the as.data.frame function. Next we use
the stack function that literally stacks columns of data, working from column 1 to column
365. Finally, we extract the values resulting from applying the stack function. This sort of
datamanipulation is straightforward in R but would bemuch trickier in Excel. The code
can actually be written in two lines, but becomes less easy to understand:

nox <- read.csv("̃ /openair/Data/hour-day.csv", header = FALSE)
nox <- stack(as.data.frame(t(nox)))$values

Even if you don’t understand this code, this example should provide sufficient informa-
tion on how to apply it.
In fact, in this case, there is an easier way to do this:
nox <- read.csv("̃ /openair/Data/hour-day.csv", header = FALSE)
nox <- t(nox)
nox <- as.vector(nox)

In this code, the data are transformed as before, producing amatrix, and thematrix is
converted to a vector. When converting amatrix to a vector, it works on columns rather
than by rows. The stack function is therefore a better choice if we were interested in
groups of data for further processing, as in the example below:

test.data <- data.frame(grp1 = 1:3, grp2 = 10:12, grp3 = 20:22)
test.data

grp1 grp2 grp3
1 1 10 20
2 2 11 21
3 3 12 22

stacked <- stack(test.data)
stacked

values ind
1 1 grp1
2 2 grp1
3 3 grp1
4 10 grp2
5 11 grp2
6 12 grp2
7 20 grp3
8 21 grp3
9 22 grp3

44

5 General use of R— advice and examples

This thenmakes it much easier to work with the different groups e.g. calculatemeans,
or plotting the data.

5.6 Daily means from hourlymeans— processing wind direction data
Sometimes it is necessary or useful to calculate daily means from hourly data. Many
particle measurements, for example, aremeasured as daily means and not hourly means.
If we want to analyse such particle data for example, by considering how it varies with
meteorological data, it is necessary to express themeteorological (andmaybe other data)
as daily means. It is of course straightforward to calculate daily means of concentrations
andwind speeds, as shown elsewhere in this document. However, this is not the case for
wind directions. For example the average of 10° and 350° is 0° (or 360°) and not 180°.
Theway to deal with this is to averagewith u and v wind components. A function has

beenwritten to do this:
dailymean <- function(mydata) {

for wind direction, calculate the components
mydata$u <- sin(2 * pi * mydata$wd/360)
mydata$v <- cos(2 * pi * mydata$wd/360)
dailymet <- aggregate(mydata, list(Date = as.Date(mydata$date)), mean, na.rm = TRUE)
mean wd
dailymet <- within(dailymet, wd <- atan2(u, v) * 360/2/pi)
correct for negative wind directions
ids <- which(dailymet$wd < 0) # ids where wd < 0
dailymet$wd[ids] <- dailymet$wd[ids] + 360
dailymet <- subset(dailymet, select = c(-u, -v, -date))
dailymet

}

In this function a data frame is supplied containing hourly data and the returned data
frame contains correctly formatted daily data. Note that very similar functions can be
used to calculate means over other time periods e.g. hourly means from 15-minute data.
The code below shows the use of this function.

mydaily <- dailymean(mydata) # calculate daily means
show top of data frame
head(mydaily)

Date ws wd nox no2 o3 pm10 so2 co pm25 nox.all
1 1998-01-01 6.835 190.2 173.5 39.36 6.870 18.17 3.153 2.699 NaN 173.5
2 1998-01-02 7.070 225.9 129.8 39.48 6.478 27.75 3.945 1.768 NaN 129.8
3 1998-01-03 11.015 221.5 119.6 37.96 8.409 20.17 3.204 1.742 NaN 119.6
4 1998-01-04 11.485 219.2 106.0 35.26 9.609 20.96 2.963 1.620 NaN 106.0
5 1998-01-05 6.610 238.2 170.6 46.04 4.957 24.21 4.523 2.126 NaN 170.6
6 1998-01-06 4.375 196.2 211.1 45.30 1.348 34.62 5.703 2.533 NaN 211.1

5.7 Using an Editor
5.7.1 Using the built-in editor

As you begin to use R, youwill quickly realise there aremore efficient ways to do things
other than just typing in commands. Often, youwill want access to a series of commands
for say, plotting a graphwith defaults of your choosing. What is needed is an Editor. R has
an in-built editor – just select File|New script. . . and the editor windowwill open. This is a
bit like Notepad inWindows. While working it can be useful to put together lines of code
in the editor, select the code, right-click and run it.

45

5 General use of R— advice and examples

Advice
As you increase the amount of coding you do, it becomes increasingly dif-
ficult to remember what the code actually does. It is always a good idea to
liberally comment your code with lines starting with a #. This is especially im-
portant if you intend making your code available to others. See Figure 18 for
an example of how commented lines are coloured differently in a dedicated
editor, making it easy to distinguish between the code and code comments.

5.7.2 Using a dedicated editor
The built-in editor is useful for small amounts of work. However, with use youwill find a
“dedicated” editor easier to use. We recommend something called RStudio, a screen shot
is shown in Figure 18. At the time of writing RStudio is a beta version of the software,
but is already very good — and likely to get much better in time. More details can be
found at http://http://rstudio.org/. There are also a lot of well-written ‘knowledge
base’ articles, see http://support.rstudio.org/help/kb. Below are a few features that
makes RStudio useful for working with openair and other R projects.
• It works onWindows, linux and AppleMac.
• It has been developed by people that clearly use R.
• In the top left pane of Figure 18 is where you can work on your R script e.g. use it to
develop and save a series of analyses for a report. Note that if you type the name of
a function (or part of) R Studio will offer completions if you press TAB. This feature
also works in the R consule, shown in the bottom left pane.

• It is easy to send a selection or line from the script to the R console by selecting ‘Run
Line(s)’.

• In the top right pane you can view the objects in your workspace. If you click on
one you can view all or most of an object as appropriate. The ‘history’ tab gives a
summary of all the commands you have input, which you can search through.

• At the bottom right there are several tabs. In Figure 18 the plot tab is shown, which
shows themost recent plot made using the console. The ‘Packages’ tab provides a
neat way of loading a package— just select the one youwant and it will load it and
all dependent packages.

46

http://http://rstudio.org/
http://support.rstudio.org/help/kb

5 General use of R— advice and examples

Figure 18:RStudio is one of the best R editors around.

47

5 General use of R— advice and examples

par(mfrow = c(1, 2))
first plot
means <- tapply(mydata$nox, format(mydata$date, "%Y-%m"), mean, na.rm = TRUE)
dates <- seq(mydata$date[1], mydata$date[nrow(mydata)], length = nrow(means))
plot(dates, means, type = "l", col = "darkgreen", xlab = "year", ylab = "nitrogen oxides
(ppb)")
means <- tapply(mydata$no2, format(mydata$date, "%Y-%m"), mean, na.rm = TRUE)
dates <- seq(mydata$date[1], mydata$date[nrow(mydata)], length = nrow(means))

second plot
plot(dates, means, type = "l", col = "skyblue3", xlab = "year", ylab = "nitrogen dioxide
(ppb)")

1998 2000 2002 2004

10
0

15
0

20
0

25
0

30
0

35
0

year

ni
tr

og
en

 o
xi

de
s

(p
pb

)

1998 2000 2002 2004

35
40

45
50

55
60

65

year

ni
tr

og
en

 d
io

xi
de

 (
pp

b)

Figure 19: Plotting two plots side-by-side using the par setting.

5.8 Several plots on one page
Often it is useful or necessary to plot more than one plot on a page. This is the sort of task
that can be fiddly to carry out if the plots are produced separately and then need to be
combined. Problems include alignment and sizing, which as aminimum can be frustrating
to get right. Rmakes it easy to plot any number of plots on a page in a neat and consistent
way. The key is to use the par function to set up the page as you want it before you plot
your graphs. The par function can control and fine-tune a vast number of plot options—
see help(par) for specific information.5
To set up a page to plot several plots in a regular grid, the esoterically named mfrow or

mfcol option is set. For example, to plot two graphs side-by-side one types in:
par(mfrow = c(1, 2))

This sets up the plot window for 1 row and 2 columns. And par(mfrow = c(2, 3))
therefore would allow for six plots in 2 rows and 3 columns etc.
Therefore, the code below produces two plots, side-by-side of NOx and NO2, of montlymean concentrations as shown in Figure 19.
Note, however that all openair functions use lattice graphics, where a slightly dif-

ferent approach is required. See subsection 8.7 for more details on how to plot several
5Note that this will only work with base graphics and not lattice.

48

5 General use of R— advice and examples

x <- mydata$nox
y <- mydata$no2
find maximum values
x.max <- max(x, na.rm = TRUE)
y.max <- max(y, na.rm = TRUE)
set the bin interval
x.int <- 5
y.int <- 2
bin the data
x.bin <- cut(x, seq(0, x.max, x.int))
y.bin <- cut(y, seq(0, y.max, y.int))
make a frequency table
freq <- table(x.bin, y.bin)
define x and y intervals for plotting
x.range <- seq(0 + x.int/2, x.max - x.int/2, x.int)
y.range <- seq(0 + y.int/2, y.max - y.int/2, y.int)
plot the data
image(x = x.range, y = y.range, freq, col = rev(heat.colors(20)))

0 200 400 600 800 1000

0
50

10
0

15
0

20
0

x.range

y.
ra

ng
e

Figure 20:Using the image function to plot NOx against NO2.

openair plots on one page.

5.9 Graphing lots of data – using level plots
It is often the casewhen plottingmonitoring data that there are somany data points it gets
hard to see relationships. Consider the scatter plot for NOx andNO2 shown in Figure 20– it is very difficult to see howNOx andNO2 are related because of the large number ofpoints. An alternative way of plotting such data is to ‘bin’ it first and count the number of
points in each bin and plot it as a level plot.
The first part of the code in above will produce a basic plot using the base graphics

function image, shown in Figure 20. Now it is possible to see the relationship between
NOx and NO2 much more clearly. It also has the benefit of showing where most of thedata are, which is not very apparent in Figure 20.
A better looking plot can be produced with a bit more work using lattice graphics, as

shown in Figure 21. This plot has the advantage of also showing a scale, which in this case
in the number of points in each bin. Lattice graphic are considerdmore in(§6).

49

5 General use of R— advice and examples

library(lattice)
grid <- expand.grid(x = x.range, y = y.range)
z <- as.vector(freq)
grid <- cbind(grid, z)
levelplot(z ˜ x * y, grid, col.regions = rev(heat.colors(20)))

x

y

50

100

150

200

200 400 600 800 1000

0

50

100

150

200

250

300

Figure 21:Using the lattice graphics levelplot function to plot NOx against NO2.

5.10 Special symbols for use in plotting air pollution data
Air pollution concentrations are expressed in many ways, perhaps most commonly in
µgm−3. It is always preferable to display these units properly rather than, for example as
ug/m3. The same is also true for subscripts in pollutant names such as NOx and PM2.5. Rhas its ownway of dealing with specialist symbols, which is similar to LATEX. This sectionprovides code for commonly used expressions. For more information type help(plotmath).
We illustrate the use of these symbols through examples shown in Table 2, by setting
the y-axis label. However, these labels can be used elsewhere too, such as in titles or to
annotate specific parts of a plot.

Table 2: Examples of commonly used text formats for air pollution.
Text required Expression
NOx ylab = expression("NO"[X])
PM2.5 ylab = expression("PM"[2.5])
(µgm−3) ylab = expression("(" * mu * "g m" ^-3 * ")")
PM10 (µgm−3) ylab = expression("PM"[10] * " (" * mu * "g m" ^-3 * ")")
Temperature (◦C) xlab = expression("Temperature (" * degree * "C)")

To demonstrate what these symbols look like, Figure 22 provides an example. The code
is shown below.

50

5 General use of R— advice and examples

plot(1, 1, xlab = expression("Temperature (" * degree * "C)"), ylab = expression("PM"[10]

˜
"(" * mu * "g m"^-3 * ")"), main = expression("PM"[2.5] * " and NO"[x] * " at

Marylebone Road"),
type = "n")

text(1, 1, expression(bar(x) == sum(frac(x[i], n), i == 1, n)))
text(0.8, 0.8, expression(paste(frac(1, sigma * sqrt(2 * pi)), " ", plain(e)^{

frac(-(x - mu)^2, 2 * sigma^2)
})), cex = 1.2)
text(1.2, 1.2, expression(hat(beta) == (X^t * X)^{

-1
} * X^t * y))

0.6 0.8 1.0 1.2 1.4

0.
6

0.
8

1.
0

1.
2

1.
4

PM2.5 and NOx at Marylebone Road

Temperature (°C)

P
M

10
 (µ

g
m

−3
)

x = ∑
i=1

n xi

n

1

σ 2π
 e

−(x−µ)2
2σ2

β̂ = (XtX)−1Xty

Figure 22: Examples of different symbols that can be used in R plots.

51

5 General use of R— advice and examples

5.11 Using databases with R
So far the discussion has focussed onworking with .csv files, whichmight be adequate for
most purposes. However, as the amount of data increases, the storage of it in this way is
not to be recommended. Amuch better approach is to store data in a database. There are
several advantages in doing so. First, it forces amore disciplined approach to storage (e.g.
variables names and formats). Second, it is possible to store a lot more information in this
way. Finally, for very large amounts of information R can run out of memory because all
the calculations are done in RAM.6 In the latter case it can bemuch better to use the SQL
database language to do some of the work first and then bring smaller data sets into R.
There are several database types that R can work with; perhaps the most common

beingMicrosoft Access. For those interested in open-source databasesMySQL is highly
recommended (we use this withmany large data sets). However, a discussion ofMySQL
goes beyond the aims of this document. It should also be noted that you do not actually
need to haveMicrosoft Access to read or write data to it.
Here is an example of how to connect to an Access database file (Access 2007) (file

available fromDavid Carslaw), which contains exactly the same data as the "example data
long.csv".

6Now that there is a 64-bit version of R forWindows, this is less of a problem and the limitation is more to
dowith the amount of RAM the computer has.

52

5 General use of R— advice and examples

library(RODBC)
set time zone to GMT
Sys.setenv(TZ = "GMT")
connect to a database file
channel <- odbcConnectAccess2007("c:/users/david/openair/Data/example data long.mdb")

read all data in
test.data <- sqlQuery(channel, "select * from dbdata")

read date, nox and no2
test.data <- sqlQuery(channel, "select date, nox, no2 from dbdata")
head(test.data)

date nox no2
1 1998-01-01 00:00:00 285 39
2 1998-01-01 01:00:00 NA NA
3 1998-01-01 02:00:00 NA NA
4 1998-01-01 03:00:00 493 52
5 1998-01-01 04:00:00 468 78
6 1998-01-01 05:00:00 264 42

select data where nox > 500 ppb
test.data <- sqlQuery(channel, "select * from dbdata where nox > 500")
head(test.data)

date ws wd nox no2 o3 pm10 so2 co pm25
1 1998-01-15 14:00:00 7.2 230 504 83 3 54 7.645 4.505 NA
2 1998-01-15 17:00:00 4.8 230 508 74 2 42 7.812 6.622 NA
3 1998-01-15 19:00:00 5.4 200 535 48 2 47 9.260 7.162 NA
4 1998-01-15 20:00:00 4.8 190 587 79 2 49 10.275 8.123 NA
5 1998-01-21 07:00:00 1.2 180 578 75 2 65 17.427 3.595 NA
6 1998-02-02 07:00:00 2.4 0 607 85 3 79 17.052 4.702 NA

select between two dates
test.data <- sqlQuery(channel, "select * from dbdata where date >= #1/1/1998# and date
<= #31/12/1999 23:00:00#")
tail(test.data)

date ws wd nox no2 o3 pm10 so2 co pm25
17515 1999-12-31 18:00:00 4.68 190 226 39 NA 29 5.455 2.375 23
17516 1999-12-31 19:00:00 3.96 180 202 37 NA 27 4.785 2.150 23
17517 1999-12-31 20:00:00 3.36 190 246 44 NA 30 5.875 2.450 23
17518 1999-12-31 21:00:00 3.72 220 231 35 NA 28 5.280 2.225 23
17519 1999-12-31 22:00:00 4.08 200 217 41 NA 31 4.787 2.175 26
17520 1999-12-31 23:00:00 3.24 200 181 37 NA 28 3.483 1.775 22

In the code above a connection is first made to the data base file, followed by examples
of various SQL queries. When connecting to databases in theway described above, the
date field is automatically recognised by R and there is no need to convert it as in the case
for the .csv file. For those interested in using databases with R, it is worth looking in the
help files of RODBC for amore comprehensive explanation of the capabilities.
The RODBC package will automatically try and preserve data formats, including those for

date/time. We have experienced a few difficulties here to do with British Summertime
and GMT. RODBCwill bring data in in a format consistent with what the operating system is
set to, which can be either BST or GMT (or other time zones). The best option in our view
is that before the data are imported, set the system toGMT as above. This will avoid all
sorts of potential problems.

53

6 Multivariate plots - introduction to the Lattice package

6 Multivariate plots - introduction to the Lattice package
6.1 Introduction to the Lattice package

In (§2.1) one of the benefits highlighted in using Rwas the extensive number of packages
available that extend the core features of R. One package called lattice is particularly
useful for plotting and analysingmonitoring data. The lattice package is based on the
original S (S-Plus) Trellis package that provides excellentmultivariate plotting capabilities.7
This is one of the stronger capabilities that R has and greatly enhances the possibilities for
plotting monitoring data. The original trellis graphics were designed byWilliamCleveland
at Bell laboratories andwere based on research into how best to visualise graphics. For
those interested in this there are a couple of books available (Cleveland, 1985, 1993).
Lattice graphics can be used to produce similar plots to those shown elsewhere in this
document, but in some cased can produce better looking plotswith better-chosen defaults.
However, the real strength of Lattice is the ability to deal with multivariate data and to
plot several plots on one page.

Installing and loading a package in R
The capabilities of R are greatly enhanced by a number of optional packages.
To use different packages, they must first be installed. Many packages such
as lattice are installed as part of the R installation itself. However, they
need to be loaded to use them. This can be done in two principal ways: use
the menu and choose Packages | Load package. . . and choose from the avail-
able packages listed; or in code you can issue a command library(package
name).
In many cases the package you want may not be installed on your system. In
this case you can choose Packages | Install package(s). . . , where you are then
prompted for a location to install from (chose one in the UK). It is possible
that this option will not work due to firewalls etc. information is being down-
loaded from a remote server. An alternative way of doing this is to go the
main R web pages, select CRAN (Comprehensive R Archive Network), choose
the appropriate web site address (again UK) and under the heading ‘Software’
choose ‘packages’. Choose the package you want (for Windows, choose Win-
dows binary zip file). Download the file to your hard disk and then choose
Packages | Install package(s) from local zip files. . . .
The drawback of using the lattice package is that most new users (and some experi-

enced one too) find it difficult to use. The emphasis is verymuch on the use of code tomake
plots. The focus of this section therefore is to provide some examples of the use of Lattice
graphics on our data set that can be readily applied to other data sets with minimum or no
alteration.

6.2 Example simple plots
We start with plotting the basic time series of NOX as shown in Figure 8. The code isshown below. For basic plotting like this, the terminology is straightforward. One of the
first things to note is the use of a formula to represent the plot nox ∼ date. You can think
of this as an equation for plotting data i.e. y = fn(x). Therefore, what appears on the y-axis
7The names trellis and lattice aremeant to reflect the idea of multiple plots i.e. like a garden trellis.

54

6 Multivariate plots - introduction to the Lattice package

xyplot(nox ˜ date, data = mydata, type = "l")

date

no
x

0

200

400

600

800

1000

1998 2000 2002 2004

Figure 23: Example plot using the lattice package to plot hourly concentrations of NOxatMarylebone Road

is given first (in this case nox), then the x-axis data (in this case date). Also given is the
argument data = mydata, and the type of plot type = "l" as before.
The plot generated is shown in Figure 23, which can be compared with Figure 8. There

are a few differences to note: the default colour is blue, the y-axis labels are horizontal
(for easier reading) and their are tick marks shown on all all sides (outside the plot so that
they do not clutter-up the data actually shown). The lattice plot can be annotated in much
the sameway as the base plots, with options such as ylim, ylab etc.
Much of the power of lattice graphics lies in the ability to plot one variable against

another dependent on a third. To get an idea of what is meant here, consider how NO2varies by NOx by day of the week. Now, day of the week is a categorical variable, which inR is referred to as a factor. We illustrate the use of this type of plotting bymaking some
simple artificial data. In the code below we first define the days of the week. We then
make a data framewhere the NOx concentrations are 70 random numbers between 0 –5 (nox = 5 * runif(70)) i.e. 10 for each day of the week. The NO2 concentrations aresimilarly assumed to be 70 random numbers, which are between 0 – 1 in this case and
the days of the week weekday are each of the days repeated 10 times. When lattice plots
a factor, it does so alphabetically. However, this makes little sense for the days of the
week and therefore we force the ordering of the days with the code shown. Finally, a plot
is produced. Note that in the plot command the formula no2 ∼ nox | weekday is used.
This means in simple terms “plot no2 against nox, but show how it varies by day of the
week”. For some reason, lattice always fills plots from the bottom left corner to the top
right. The as.table = TRUE command forces it to plot it from the top left to the bottom
right, whichmoremost applications seems like amore logical way of plotting. The result
of the plotting is shown in Figure 24.

6.3 Amore complicated plot — plot each year of data in a separate panel
Nowwe get onto the real power of Lattice: multiple plots on a page that can convey lots of
useful information. When a lot of data are available, it is very useful to be able to plot it all
quickly and view it. In our data set we have over 65,000 lines of data, which if plotted as a
typical x-y plot would be hard to assess. A better way is to plot each year separately and
plot all years on 1-page. The code below performs this function. The code is explained in
threemain sections.

55

6 Multivariate plots - introduction to the Lattice package

weekday names
weekdays <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday",

"Saturday", "Sunday")

make data frame
test.data <- data.frame(nox = 5 * runif(70), no2 = runif(70), weekday =
as.factor(rep(weekdays,

each = 10)))

order the days i.e. do not want the default alphabetical
test.data$weekday <- ordered(test.data$weekday, levels = weekdays)

plot
xyplot(no2 ˜ nox | weekday, data = test.data, as.table = TRUE)

nox

no
2 0.0

0.2

0.4

0.6

0.8

1.0
Monday

0 1 2 3 4 5

Tuesday Wednesday

0 1 2 3 4 5

Thursday

0 1 2 3 4 5

Friday Saturday

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0
Sunday

Figure 24: Example plot using the lattice package to plot two variables against each
other (nox and no2) , but dependent on a third (weekday).

Section 1 What is needed first is to convert the date to a year and convert this year to a
factor, so that it canbeplottedas a categorical variable. The codeformat(mydata$date,
"%Y") converts the date to year format and the as.factor converts this (numerical
value) to a factor. The year is then added to the data frame mydata using the column
bind command cbind.

Section 2 This bit of code simply finds the start and end years of the data, which are read
into two variables begin.year and end.year. These variables are used in the plot
function andmakes the function rather more easy to read.

Section 3 The third part of the code plots the data. The aspectoption sets the dimensions
of the plot (1 would be a square; 0.5 is a plot twice as wide as it is long). The scales
option is quite complicated. What this does is manually set the x-axis points every
two months and uses the three letter month summary option %b. The plot itself
contains several panel functions that add grid lines and plot the actual data. Again, it
will take some digesting to understand this code, but it should be usable withmost
hourly data sets and can be applied without knowing all the details.

What Figure 25 shows is a huge amount of data in a very compact form. It is easy to
see for example somemissing data in July 1999, or very high concentrations of NOx inJanuary 1999.

56

6 Multivariate plots - introduction to the Lattice package

SECTION [1]
mydata$year <- as.factor(format(mydata$date, "%Y"))

SECTION [2] determine begin/end year (+1) for gridlines and axis
begin.year <- ISOdate(levels(mydata$year)[1], 1, 1, 0, 0)
end.year <- ISOdate(as.numeric(levels(mydata$year)[length(levels(mydata$year))]) +

1, 1, 1, 0, 0)

SECTION [3]
xyplot(nox ˜ date | year, data = mydata, aspect = 0.4, as.table = TRUE,

scales = list(relation = "free", x = list(format = "%b", at = seq(begin.year,
end.year, by = "2 month"))), panel = function(x, y) {
add grid lines every month by finding start/end date
panel.abline(v = seq(begin.year, end.year, by = "month"), col = "grey85")
panel.abline(h = 0, col = "grey85")
panel.grid(h = -1, v = 0)
panel.xyplot(x, y, type = "l", lwd = 1)

})

date

no
x

0
20

0
40

0
60

0
80

0

Jan Mar May Jul Sep Nov Jan

1998

0
20

0
60

0
10

00

Jan Mar May Jul Sep Nov Jan

1999

0
20

0
40

0
60

0
80

0

Jan Mar May Jul Sep Nov Jan

2000

0
20

0
40

0
60

0
80

0

Jan Mar May Jul Sep Nov Jan

2001

0
20

0
40

0
60

0

Jan Mar May Jul Sep Nov Jan

2002

0
20

0
40

0
60

0

Jan Mar May Jul Sep Nov Jan

2003

0
20

0
40

0
60

0

Jan Mar May Jul Sep Nov Jan

2004

0
10

0
30

0
50

0

Jan Mar May Jul

2005

Figure 25: Example plot using the lattice package to plot hourly concentrations of NOxatMarylebone Road

57

6 Multivariate plots - introduction to the Lattice package

6.4 Showing trends dependent on a third variable
We now analyse the data in quite a complex way. Here we see the real power of lattice
plots in analysing data. The code below can bemodified to look at the data in all kinds of
ways with only simplemodification. For this analysis however, we aim to do three things:
1. Average the data bymonth of the year. Monthly averages are a convenient way of
summarising data.

2. Split these averages by differentwind sectors. By considering the trends by different
wind sectors, some insights can be gained the trends in different source types.

3. Apply a smoothing line to highlight the trends. In this case a locally-weighted regres-
sion line is applied.

This analysis also makes use of some very useful functions, which are part of the base
system of R. The first is cut, which provides a powerful way of dividing data up in different
ways; in this case creating eight different wind direction sectors. The second is aggregate,
which neatly summarises the data bymonthlymean andwind sector. A summary of the
main parts of the analysis is given next.
Divide thewind directions into eight sectors This code uses the cut command.
Define the levels for the different wind sectors This code gives a nicer description of the

wind sectors that will be usedwhen plotting the graphs.
Summarise the data This part of the code calculates themean concentrations of NOx byyear-month and bywind sector.
The results from the analysis are shown in Figure 26,which highlights several interesting

features.

58

6 Multivariate plots - introduction to the Lattice package

divide-up date by wd
wd.cut <- cut(mydata$wd, breaks = seq(0, 360, length = 9))

define the levels for plotting
wd <- seq(0, 360, by = 45)
levels(wd.cut) <- paste(wd[-length(wd)], "-", wd[-1], " degrees", sep = "")

summarise by year/month and wd
summary.data <- aggregate(mydata["nox"], list(date = format(mydata$date,

"%Y-%m"), wd = wd.cut), mean, na.rm = TRUE)

need to get into year/month/day
newdate <- paste(summary.data$date, "-01", sep = "")
newdate <- as.Date(newdate, format = "%Y-%m-%d")

add to summary
summary.data <- cbind(summary.data, newdate)

plot
xyplot(nox ˜ newdate | wd, data = summary.data, layout = c(4, 2), as.table = TRUE,

xlab = "date", ylab = "nitrogen oxides (ppb)", panel = function(x, y) {
panel.grid(h = -1, v = 0)
panel.abline(v = seq(as.Date("1998/1/1"), as.Date("2007/1/1"), "years"),

col = "grey85")
panel.xyplot(x, y, type = "l", lwd = 1)
panel.loess(x, y, col = "red", lwd = 2, span = 0.2)

})

date

ni
tr

og
en

 o
xi

de
s

(p
pb

)

100

200

300

400
0−45 degrees

1998 2000 2002 2004

45−90 degrees 90−135 degrees

1998 2000 2002 2004

135−180 degrees

1998 2000 2002 2004

180−225 degrees 225−270 degrees

1998 2000 2002 2004

270−315 degrees

100

200

300

400
315−360 degrees

Figure 26: Example plot showing how a time series can a) be summarised by monthly
means, b) split by wind sector, and c) show a locally-weighted smooth trend for
each panel.

59

7 Functions in R

7 Functions in R
This section highlights the importance of functions in R to carry out specific tasks. Most of
the rest of Part II of this report considers the use of dedicated functions written to analyse
air pollution data. This section gives an overview of why functions are important and how
they work. Functions are useful in manyways:
• For repetitive tasks they help take the effort out of processing data. An example
would include a function to import and clean-up data.

• Functions provide amuchmore structuredway ofworking. They help to break down
big problems into smaller bits that are easier to work with.

• For air pollution analysis, dedicated functions can (and have) beenwritten to offer
unique analysis capabilities that are not offered in any other software. R offers
excellent capabilities here for creating new analyses and plots.

Let’s consider a very simple function that adds two numbers (although onewould not
actually ever need to write such a simple function!):

add.two <- function(a = 1, b = 2) {
a + b

}

The function name is add.two, it accepts two arguments a and b. The body of the
function is written within the braces {}. This function can be read into R simply by pasting
it is – and it then becomes available for use. Let’s use the function to add 10 and 5:

add.two(10, 5)

[1] 15

add.two(c(1, 2, 3), 2)

[1] 3 4 5

add.two(c(1, 2, 3), c(5, 6, 7))

[1] 6 8 10

Easy! Note that in the definition of the function itself, we provided default values for a
and b. If one called the function without supplying a or b it would return 3:

add.two()

[1] 3

This functionality is useful for testing purposes, but also for providing defaults for some
of the variables. If the user does not want to alter a default value, there is no need to
supply it.

60

Part II
Dedicated functions for analysing air
pollution data

8 Introduction
Part II of this report focuses on the development and use of dedicated functions written
to process air pollution data. These functions greatly extend the capabilities outlined in
Part I, where the focus was on developing an understanding of R.
While many of the options in these functions allow quite a sophisticated analysis to be

undertaken, the defaults generally use the simplest (and fastest) assumptions. A more
detailed analysis can refine these assumptions e.g. by accounting for autocorrelation, or
fine-control over the appearance of a plot.
It should be noted that while the aim is to keep this documentation up to date, the

primary source of information related to the different functions is containedwithin the
package itself. Once loaded, type ?openair to see all the help pages associatedwith the
package. The website for openair is http://www.openair-project.org.
This section contains important information on loading the openair package for the

first time and the input data requirements. Users will need to consider the advice in
this section to ensure that openair can be usedwithout problems.

8.1 Installing and loading the openair package
The dedicated functions for the analysis of air pollution data have beenmade available in
the openair package. As of September 2010, openair is available on CRAN. This means
it should be very straightforward to install. InWindows, choose the packagesmenu in R
and then choose “Install package(s)”. You will be prompted for a location fromwhich to
download — so scroll down to the appropriate country. Once selected you will then be
shown a large list of available packages— choose openair.

Second approach to installing openair
The second approach to installing openair is slightly more involved but should still be
easy. This situation arises if you are using a computer that does not let R communicate
externally. These are the steps:
1. Download theWindows binary (zip) files from http://cran.r-project.org/web/

packages/ for the following packages and store them somewhere convenient on
your computer: “openair”, “zoo”, “reshape2”, “plyr”, “RColorBrewer” and “proto”.
This is done by clicking on the link for each package, which will show a pagewith a
downloads section where the zip file is shown.

2. Install openair and all the other dependent packages by choosing ‘Packages’ from
the Rmenu, then ‘Install packages(s) from local zip files. . . ’, and choose all the zip files
that were downloaded.

The package can be tested by going into the ‘Packages’ menu in R and choosing ‘Load
package’ and then choose openair. The package comes with some test data — several

61

http://www.openair-project.org
http://cran.r-project.org/web/packages/
http://cran.r-project.org/web/packages/

8 Introduction

years of data from the Marylebone Road site in London (‘mydata’). Test it by trying a
function e.g.

summaryPlot(mydata)

Note that it is only necessary to install packages once — unless a package has been
updated or a new version of R is installed. Occasionally it is useful to update the packages
that have been installed through the “Update packages” option under the Packages menu.
Because the openair package (and R itself) are continually updated, it will be useful to
know this document was produced using R version 2.15.0 and openair version 0.6-0.

8.2 Where is the source code?
All R code is accessible. On CRAN, you will see there are various versions of packages:
Package source,MacOS X binary andWindows binary. The source code is contained in the
Package source, which is a tar.gz (compressed file). ForWindows users not familiar with
this format, you can download 7zip (http://www.7-zip.org/), which is an open source,
free data compression program. The R source code is contained in the R sub directory.

8.3 Brief introduction to openair functions
This section gives a brief overview of the functions in openair. The core functions are
summarised in Table 4, which shows the input variables required, the main purpose of
the function, whether multiple pollutants can be considered and a summary of the "type"
option. The "type" option given in Table 4 gives the maximum number of conditioning
variables allowed in each function—more on this later.
Having read some data into a data frame it is then straightforward to run any function.

Almost all functions are run as:
functionName(thedata, options, ...)

The usage is best illustrated through a specific example, in this case the polarPlot
function. The details of the function are shown in section 15 and through the help pages
(type ?polarPlot). As it can be seen there are a large number of options associated with
polarPlot—andmost other functions and each of these has a default. For example, the
default pollutant considered in polarPlot is “nox”. If the user has a data frame called
theData then polarPlot couldminimally be called by:

polarPlot(theData)

which would plot a “nox” polar plot if “nox” was available in the data frame theData.
Note that the options do not need to be specified in order nor is it always necessary to

write the whole word. For example, it is possible to write:
polarPlot(theData, type = "year", poll = "so2")

In this case writing poll is sufficient enough to uniquely identify that the option is
pollutant.
Also there aremany common options available in functions that are not explicitly doc-

umented, but are part of lattice graphics. Some of the common ones are summarised in
Table 3. The layout option allows the user to control the layout of multi-panel plots e.g.
layout = c(4, 1)would ensure a four-panel plot is 4 columns by 1 row.

62

http://www.7-zip.org/

8 Introduction

Table 3:Commonoptionsused inopenairplots that canbe set by theuserbut are generally
not explicitly documented.

option description
xlab x-axis label
ylab y-axis label
main title of the plot
pch plotting symbol used for points
cex size of symbol plotted
lty line type used
lwd line width used
layout the plot layout e.g. c(2, 2)

The idea of conditioning
One of the central themes in openair is the idea of conditioning plots. Rather
than plot x against y , considerably more information can usually be gained
by considering a third variable, z . In this case, x is plotted against y for many
different intervals of z . This idea can be extended in many ways. For ex-
ample, a trend of NOx against time can be conditioned in many ways: NOxvs. time split by wind sector, day of the week, wind speed, temperature, hour
of the day. . . and so on. This type of analysis is rarely carried out when ana-
lysing air pollution data, in part because it is time consuming to do. However,
thanks to the capabilities of R and packages such as lattice, it becomes
easier to work in this way. These are ideas that we will continue to work on
as the project develops. In most openair functions conditioning is controlled
using the ‘type’ option. Table 4 summarises the functions that accept the op-
tion ‘type’ and the number of types that can be set. Numerous examples of
conditioning are given throughout this document.

63

8 Introduction

Table 4: Summary of main openair analysis functions. Click on function name to be taken
to the section on that function.

Function Mandatory variables Purpose Multiple type
pollutants option

calcFno2 see §(30) for details estimate primary NO2emissions ratio from
monitoring data

no no

calendarPlot date, one numeric field Calendar-type view of
mean values

no no
conditionalEval observed andmodelled val-

ues and other variables(s)
extensions to
conditionalQuantile

no yes [1]
conditionalQuantile observed andmodelled val-

ues
quantile comparisons for
model evaluation

no yes [2]
GoogleMapsPlot two numeric fields for latit-

ude/longitude
annotate Google maps no Yes [2]

kernelExceed date, ws, wd, one other nu-
meric field

bivariate kernel density es-
timates for exeedance stat-
istics

no Yes [1]

linearRelation date, two numeric fields explore linear relation-
ships between variables in
time

no limited

TheilSen date, one numeric field Calculate Theil-Sen slope
estimates and uncertain-
ties

no Yes [2]

modStats observed andmodelled val-
ues

calculate a range of model
evaluation statistics

no yes [≥1]
percentileRose wd, one other numeric

field
percentiles by wind direc-
tion

no Yes [2]
polarAnnulus date, ws, wd, one other nu-

meric field
polar annulus plot for tem-
poral variations by wind
direction

yes Yes [2]

polarCluster ws, wd, one other numeric
field

cluster analysis of bi-
variate polar plots for
feature extraction

No No

polarFreq ws, wd alternative to wind
rose/pollution rose

no Yes [2]
polarPlot ws, wd, one other numeric

field
bi-variate polar plot yes Yes [2]

pollutionRose ws, wd, one other numeric
field

pollution rose no Yes [2]
scatterPlot x and y values to plot traditional scatter plots

with enhanced options
no Yes [2]

smoothTrend date, one numeric field smooth trend estimates yes Yes [2]
summaryPlot date, one numeric field summary view of a data

frame
yes no

TaylorDiagram two numeric fields model evaluation plot no Yes [2]
timePlot date, one numeric field Time-series plotting yes Yes [1]
timeVariation date, one numeric field diurnal, day of week and

monthly variations
yes Yes [1]

trajCluster data from importTraj HYSPLIT back trajectory
cluster analysis

no Yes [2]
trajPlot data from importTraj HYSPLIT back trajectory

plots — points of lines
no Yes [2]

trajLevel data from importTraj HYSPLIT back traject-
ory plots — binned or
smoothed

no Yes [2]

trendLevel date, one other numeric
field

flexible level plots or ‘heat
maps’

no Yes [2]
windRose date, ws, wd traditional wind rose no Yes [2]

64

8 Introduction

Table 5: Summary of openair utility functions. Click on function name to be taken to the
section on that function.

Function Mandatory variables Purpose Multiple type
pollutants option

calcPercentile date, one numeric variable calculate percentiles for
numeric variables in a data
frame

NA NA

corPlot a data frame correlationmatrix with condi-
tioning

yes yes [1]
cutData a data frame partition data into groups for

conditioning plots and ana-
lysis

yes yes [≥1]

importADMS an ADMS output file e.g. .pst,
.met, .mop, .bgd

import outputs from the
ADMS suite of dispersion
models (McHugh et al., 1997)

NA NA

importAURN site code and year import hourly data
from the UK air qual-
ity data archive (http:
//www.airquality.co.uk/
data_and_statistics.php)

NA NA

importKCL site code and year import hourly data
from the London Air
data archive (http:
//www.londonair.org.uk/
LondonAir/Default.aspx)

NA NA

importTraj site code and year import HYSPLIT back traject-
ory data fromKCL servers

NA NA
quickText a string properly format common pol-

lutant names and units
NA NA

selectByDate date and one other variable flexibly select date periods by
year, day of week etc.

NA NA
selectRunning date and one other variable select contiguous periods of

a certain run-length above a
specified threshold

NA NA

splitByDate date and one other variable partition and label a data
frame by time periods

NA NA
timeAverage date, one numeric variable calculate statistics over flex-

ible time periods account for
data capture rates etc.

NA NA

65

http://www.airquality.co.uk/data_and_statistics.php
http://www.airquality.co.uk/data_and_statistics.php
http://www.airquality.co.uk/data_and_statistics.php
http://www.londonair.org.uk/LondonAir/Default.aspx
http://www.londonair.org.uk/LondonAir/Default.aspx
http://www.londonair.org.uk/LondonAir/Default.aspx

8 Introduction

8.4 Input data requirements
The openair package applies certain constraints on input data requirements. It is im-
portant to adhere to these requirements to ensure that data are correctly formatted
for use in openair. The principal reason for insisting on specific input data format is that
there will be less that can gowrong and it is easier to write code for amore limited set of
conditions.
The openair package requires as an input a data frame, which generally consists of

hourly date/time, pollution andmeteorological data. As shownelsewhere in this document,
the recommendedway of inputting data into R is through reading a .csv file. This in itself
avoids potential issues with ‘awkward’ file formats e.g. with varying header lines. Of
course, anyone familiar with Rwill know how to do this andmay choose to import their
data from a range of sources such as databases. A few important requirements and advice
are given below.

Use openair functions to help import data!
There are several functions in (§9) that make the process of importing data
into openair much simpler. Where possible, these functions should be used.
(§9) also contains some useful functions for manipulating data.

1. Data should be in a ‘rectangular’ format i.e. columns of data with a header on the
first line. The file “example data long.csv” provides a template for the format and
users should refer to that file if in doubt. The best approach is to use the import
function that is part of openair, described in (§9).

2. Where fields should have numeric data e.g. concentrations of NOx , then the usershould ensure that no other characters are present in the column, accept maybe
something that represents missing data e.g. “no data”. Even here, it is essential to
tell the import function howmissing data are represented; see (§9).

3. The date/time field should be given the heading date— note the lower case. No
other name is acceptable.

4. Thewind speed andwind direction should be named ws and wd, respectively (note
again, lower case). There is an implicit assumption that wind speed data are in units
of m s−1. Most functions have been written assuming reasonable ranges in wind
speed in m s−1. However, the functions will work if the units were in knots, for
example and several functions allow the user to annotate the plots with the correct
units. Wind directions follow the UK Met Office format and are represented as
degrees from north e.g. 90° is east. North is taken to be 360°.

5. Other variables names can be upper/lower case but should not start with a number.
If column names do have white spaces, R will automatically replace them with a
full-stop. While ‘PM2.5’ as a field name is perfectly acceptable, it is a pain to type it
in—better just to use ‘pm25’ (openairwill recognise pollutant names like this and
automatically format them as PM2.5 in plots).

Note if userswish to assume non-zerowind speeds to be calm e.g. anywind speed below
0.5m s−1, then these can be set directly e.g.

mydata$ws[mydata$ws < 0.5] <- 0

66

8 Introduction

It should bementioned again that any reasonably large amount of data should be kept
in a database and not Excel sheets and the like. Much less will go wrong if this is the case;
see §(5.11) for some information on Access databases.

8.4.1 Dealing withmore than one site
Inmany situations users will havemore than one site available andmost openair functions
can deal with this situation. However, it does require that the data are in a certain format.
If the data are available via the AURN archive or via the KCL LAQN then it is possible to
use the importAURN or importKCL functions to select multiple sites at once and the data
will be correctly formatted for use by the functions.
If it is not possible to import the data in this way, it is necessary to format the data in

such a way that can be used. The format is very similar to that described above for several
pollutants at a single site. Withmore than one site it is necessary to have another column
(with name site) with the site name in. Data are therefore ‘stacked’.
Sometimes data will not be in this format and site data will be in separate columns.

(§31.7.2) shows the approach that can be used to format such data.
If users need help with formatting their data, please contact us for advice.

8.5 Using colours
Type colors()
or colours()
into R to see
full list of

named colours

Many of the functions described require that colour scales are used; particularly for plots
showing surfaces. It is only necessary to consider using other colours if the user does not
wish to use the default scheme, shown at the top of Figure 27. The choice of colours does
seem to be a vexing issue as well as something that depends on what one is trying to show
in the first place. For this reason, the colour schemes used in openair are very flexible:
if you don’t like them, you can change them easily. R itself can handle colours in many
sophisticated ways; see for example the RColorBrewer package.
Several pre-defined colour schemes are available tomake it easy to plot data. In fact, for

most situations the default colour schemes should be adequate. The choice of colours can
easily be set; either by using one of the pre-defined schemes or through a user-defined
scheme. More details can be found in the openair openColours function. Some of the
defined colours are shown in Figure 27, together with an example of a user defined scale
that provides a smooth transition from yellow to blue. The code that produced this plot is
shown for Figure 27:8
The user-defined scheme is very flexible and the following provides examples of its use.

In the examples shown next, the polarPlot function is used as a demonstration of their
use.

use default colours - no need to specify
polarPlot(mydata)

use pre-defined 'jet' colours
polarPlot(mydata, cols = "jet")

define own colours going from yellow to green
polarPlot(mydata, cols = c("yellow", "green"))

define own colours going from red to white to blue
polarPlot(mydata, cols = c("red", "white", "blue"))

8This is given for interest, the user does not need to know this to use the colours.

67

8 Introduction

library(openair)
small function for plotting
printCols <- function(col, y) {

rect((0:200)/200, y, (1:201)/200, y + 0.1, col = openColours(col, n = 201), border =
NA)

text(0.5, y + 0.15, deparse(substitute(col)))
}

plot an empty plot
plot(1, xlim = c(0, 1), ylim = c(0, 1.6), type = "n", xlab = "", ylab = "",

axes = FALSE)
printCols("default", 0)
printCols("increment", 0.2)
printCols("heat", 0.4)
printCols("jet", 0.6)
printCols("hue", 0.8)
printCols("brewer1", 1)
printCols("greyscale", 1.2)
printCols(c("tomato", "white", "forestgreen"), 1.4)

"default"

"increment"

"heat"

"jet"

"hue"

"brewer1"

"greyscale"

c("tomato", "white", "forestgreen")

Figure 27: Pre-defined colour scales in openair. The bottom colours scheme is a user-
defined one.

8.6 Automatic text formatting
openairwill increasingly try to automate the process of annotating plots. It can be time
consuming (and tricky) to repetitively type in text to represent µgm−3 or PM10 (µgm−3)
etc. in R. For this reason, an attempt is made to automatically detect strings such as “nox”
or “NOx” and format them correctly. Where a user needs a y-axis label such as NOx(µg m−3) it will only be necessary to type ylab = “nox (ug/m3)”. The same is also true for
plot titles.
Over timewewill add to the number of text strings that could be automatically format-

ted. It is suggested that users get in touch if they have a specific request that is not yet
covered. Most functions have an option called auto.text that is set to TRUE by default.
Users can override this option by setting it to FALSE.
Note that there will be occasions when the user will want to format the text themselves,

as shown by the examples in Table 2. In this case the option auto.text = FALSE should

68

8 Introduction

be set when using a function and the user should supply their own expression.

8.7 Multiple plots on a page
Weoften get asked how to combinemultiple plots on one page. Recent changes to openair
makes this a bit easier. Note that becauseopenair uses lattice graphics the base graphics
par settings will not work.
It is possible to arrange plots based on a column× row layout. Let’s put two plots side

by side (2 columns, 1 row). First it is necessary to assign the plots to a variable:
a <- windRose(mydata)
b <- polarPlot(mydata)

Nowwe can plot them using the split option:
print(a, split = c(1, 1, 2, 1))
print(b, split = c(2, 1, 2, 1), newpage = FALSE)

In the code above for the ‘split’ option, the last two numbers give the overall layout (2, 1)
— 2 columns, 1 row. The first two numbers give the column/row index for that particular
plot. The last two numbers remain constant across the series of plots being plotted.
There is one difficulty with plots that already contain sub-plots such as timeVariation

where it is necessary to identify the particular plot of interest (see the timeVariation
help for details). However, say wewant a polar plot (b above) and a diurnal plot:

c <- timeVariation(mydata)
print(b, split = c(1, 1, 2, 1))
print(c, split = c(2, 1, 2, 1), subset = "hour", newpage = FALSE)

Formore control it is possible to use the position argument. position is a vector of 4
numbers, c(xmin, ymin, xmax, ymax) that give the lower-left and upper-right corners of a
rectangle in which the plot is to be positioned. The coordinate system for this rectangle is
[0–1] in both the x and y directions.
As an example, consider plotting the first plot in the lower left quadrant and the second

plot in the upper right quadrant:
print(a, position = c(0, 0, 0.5, 0.5), more = TRUE)
print(b, position = c(0.5, 0.5, 1, 1))

The position argument gives more fine control over the plot location.

8.8 Getting help
The principal place for seeking help with openair functions is through the software itself.
The document you are reading will increasingly give the background to the ideas and
wider information. Also, the package itself will always contain themost up to date help.
Furthermore, the process of building and checking packages is strict. For example, it is
checked to see if all the options in a function match with descriptions in the help files,
and all examples given in the help (and there are many) are run to ensure they all work.
Nevertheless, the options shown for each function in this document are parsed directly
from the openair package ensuring consistency between this document and the package
help. Tobring up the general help page (assuming youhave loadedopenair), type?openair,
which will bring up the main openair page, from which there are links to all functions.
Similarly, if you want help with a specific function more directly, type something like
?polarPlot.

69

9 Getting data into openair

Figure 28: The help screen for the function polarPlot.

The help screenwill provide themost up to date information on the function including:
a short description, a description of all the options, amore detailed description and links to
other similar functions. Importantly, each function help will have several examples given
of its use, which are easily reproducible; just copy them into R. These examples use the
data set “example data long.csv” mentioned previously.

Handy tip: use TAB for word completion
If you are typing directly into R you do not always need to type the whole
word of a function or option. Taking the calendarPlot function as an ex-
ample, type “calen” then press TAB and it will complete the whole string
“calendarPlot”. Similarly, when typing the function options such as “pollut-
ant”, just type the first few lines “poll”, press TAB and it will complete as
“pollutant=”. This makes R much quicker to work with. It takes a bit of exper-
imentation to get a feel for how many letters are required before a unique
function name or option can be completed.

9 Getting data into openair
Importing data is usually the first step involved in data analysis using openair. As has
been stressed before, the key issue is ensuring the data are in a simple format avoiding

70

9 Getting data into openair

any unnecessary formatting. For this reason data are best stored either in a database or
a .csv file. R itself has lots of capabilities for importing data and these will be useful in
many situations e.g. read.table and read.csv. However, openair has several dedicated
functions to make data import easier for users, as well as somemore specific functions for
particular data types. These are described below.

9.1 The import function
A flexible function import has beenwritten to import .csv or .txt file data and format the
date/time correctly. The main purpose of this function is to help format dates etc. for
use in openair and R. This is the principal means bywhichmost users should import data
unless the data are fromUK networks. It is simple to use with its default assumptions e.g.
header on the first line and a column ‘date’ in the format dd/mm/yyyy HH:MM:

mydata <- import()

Typing this into Rwill bring up an ‘open file’ dialog box, fromwhich you can choose a .csv
file. Try importing the “example data long.csv” file in this was to see how it works. Used
without any options like this, it assumes that the date field is in the format dd/mm/yyyy
HH:MMand is called ‘date’.
Often it is better to supply the file path because this makes the analysis more reprodu-

cible e.g.
mydata <- import("d:/temp/my interesting data.csv")

The import function is actually very flexible and can take account of different date
formats, header lines etc. See the options below. For most users, few if any of these
options will need to be used, but for “difficult” data, the flexibility should be helpful. One
option that is often useful is to tell R howmissing data are represented. If the fields are
left blank, theywill automatically be set to NA. However, it may be that the file identifies
missing data by “NoData”, or “-999”. In this case, import should be called like:

mydata <- import(na.strings = "NoData")

or
mydata <- import(na.strings = "-999")

In the case of missing data being represented by several strings e.g. “-99.0” and “-999”, it
should be called like

mydata <- import(na.strings = c("-99.0", "-999"))

It is essential to supply the import function with details of howmissing data are rep-
resented if they are not represented by either a blank cell or “NA”. This is because if text
is present in a column that should be numeric, then R will consider that the column is a
character and not numeric. When using the import function, details of the format of each
field are printed in R. The user can check that fields that should be numeric appear as
either “numeric” or “integer” and not “character” or “factor”.
Another example is a file that has separate date and time fields e.g. a column called

‘mydate’ and a separate column called ‘mytime’. Further, assume that date is in the format
dd.mm.YYYY e.g. 25.12.2010, and time is in the format HH:MM. Then the file could be
imported as:

71

9 Getting data into openair

import("c:/temp/test.csv", date = "mydate", date.format = "%/d.%m.%Y",
time = "mytime", time.format = "%H:%M")

What if the date was in the formatmm.dd.YYYY?:
import("c:/temp/test.csv", date = "mydate", date.format = "%/m.%d.%Y",

time = "mytime", time.format = "%H:%M")

. . . and the timewas just the hour as an integer (0–23):
import("c:/temp/test.csv", date = "mydate", date.format = "%/m.%d.%Y",

time = "mytime", time.format = "%H")

Another commonsituation is that hour is representedas1–24. In this case it is necessary
to correct for this. R stores POSIXct format as seconds, so 3600 need to be subtracted to
ensure the time is correct e.g.

import("c:/temp/test.csv", date = "mydate", date.format = "%/m.%d.%Y",
time = "mytime", time.format = "%H", correct.time = -3600)

Note if time was expressed as HH:MM:ss, then the option time.format = "%H:%M:%S"
should be used.
There are other options for ignoring the first n lines i.e. due to header information and

so on. The user can specify the header line row (header.at) and the row the data starts at
(data.at).
The options for the import function are:

file The name of the file to be imported. Default, file = file.choose(), opens
browser. Alternatively, the use of read.table (in utils) also allows this to
be a character vector of a file path, connection or url.

file.type The file format, defaults to common "csv" (comma delimited) format, but also
allows "txt" (tab delimited).

sep Allows user to specify a delimiter if not "," (csv) or TAB (txt). For example ";"
is sometimes used to delineate separate columns.

header.at The file row holding header information or NULL if no header to be used.
data.at The file row to start reading data from. When generating the data frame, the

functionwill ignore all information before this row, and attempt to include
all data from this row onwards.

date Name of the field containing the date. This can be a date e.g. 10/12/2012 or
a date-time format e.g. 10/12/2012 01:00.

date.format The format of the date. This is given in ’R’ format according to strptime. For
example, a date format suchas1/11/200012:00 (day/month/yearhour:minutes)
is given the format "%d/%m/%Y%H:%M". See examples below and strptime
for more details.

time The name of the column containing a time— if there is one. This is usedwhen
a time is given in a separate column and date contains no information about
time.

time.format If there is a column for time then the time formatmust be supplied. Com-
mon examples include "%H:%M" (like 07:00) or an integer giving the hour, in
which case the format is "%H". Again, see examples below.

72

9 Getting data into openair

tz.in The time zone of the data being read. Most of the time this field can be
ignored. However, one situation where it is useful to supply tz.in is if the
original data considered daylight saving time i.e. there is an hourmissing in
spring and duplicated in autumn. An example for UK data would be tz.in =
"Europe/London".

tz.out The time zone of the output to be used by openair functions.
na.strings Strings of any terms that are to be interpreted asmissing (NA). For example,

this might be "-999", or "n/a" and can be of several items.
quote String of characters (or character equivalents) the imported file may use to

represent a character field.
ws Name of wind speed field if present if different from "ws" e.g. ws = "WSPD".
wd Name of wind direction field if present if different from "wd" e.g. wd =

"WDIR".
correct.time Numerical correction (in seconds) for imported date. Default NULL turns

this option off. This can be useful if the hour is represented as 1 to 24 (rather
than 0 to 23 assumed by R). In which case correct.time = -3600will cor-
rect the hour.

... Other arguments passed to read.table.

9.2 The importAURN function
While import is a useful function for ad-hoc data import, much of the data stored in the
UK and beyond resides on central repositories that are available over the Internet. The
UKAURN archive and King’s College London’s London Air Quality Network (LAQN) are
two important and large databases of information that allow free public access. Storing
andmanaging data in this way has many advantages including consistent data format, and
underlying high quality methods to process and store the data. We are working with AEA
and KCL tomake things easier to link with openair functions.
Manyusersdownloadhourly data fromtheair quality archive athttp://www.airquality.

co.uk. Most commonly, the data are emailed to theuser as .csvfiles andhave afixed format
as shown below. This is a useful facility but does have some limitations and frustrations,
many of which have been overcome using a newway of storing and downloading the data
described below.
The importAURN function has beenwritten tomake it easy to import data from the UK

AURN. AEA have provided .RData files (R workspaces) of all individual sites and years for
the AURN. These files are updated on a daily basis. This approach requires a link to the
Internet to work.
There are several advantages over the web portal approachwhere .csv files are down-

loaded. First, it is quick to select a range of sites, pollutants and periods (see examples
below). Second, storing the data as .RData objects is very efficient as they are about four
times smaller than .csv files (which are already small) – whichmeans the data downloads
quickly and saves bandwidth. Third, the function completely avoids any need for data
manipulation or setting time formats, time zones etc. Finally, it is easy to import many
years of data beyond the current limit of about 64,000 lines. The final point makes it
possible to download several long time series in one go.

73

http://www.airquality.co.uk
http://www.airquality.co.uk

9 Getting data into openair

The site codes and pollutant names can be upper or lower case. The function will issue
a warning when data less than six months old is downloaded, whichmay not be ratified.
Type ?importAURN for a full listing of sites and their codes.
Note that currently there is nometeorological data associated with the archive. To use

the fill flexibility of the functions it is recommended that the AURN data are combined
with appropriate local meteorological data. See (§5.3) for more details on how to combine
separate air pollution andmeteorological files.
The function has the following options.

site Site cd of the AURN site to import e.g. "my1" isMarylebone Road. Several
sites can be importedwith site = c("my1", "nott")— to importMaryle-
bone Road andNottingham for example.

year Year or years to import. To import a sequence of years from 1990 to 2000
use year = 1990:2000. To import several specfic years use year = c(1990,
1995, 2000) for example.

pollutant Pollutants to import. If omitted will import all pollutants ffrom a site. To
import only NOx andNO2 for example use pollutant = c("nox", "no2").

hc A few sites have hydrocarbon measurements available and setting hc =
TRUEwill ensure hydrocarbon data are imported. The default is however not
to as most users will not be interested in using hydrocarbon data and the
resulting data frames are considerably larger.

Some examples of usage are shown below.
import all pollutants from Marylebone Rd from 1990:2009
mary <- importAURN(site = "my1", year = 2000:2009)

import nox, no2, o3 from Marylebone Road and Nottingham Centre for 2000
thedata <- importAURN(site = c("my1", "nott"), year = 2000, pollutant = c("nox",

"no2", "o3"))

import over 20 years of Mace Head O3 data!
o3 <- importAURN(site = "mh", year = 1987:2009)
import hydrocarbon data from Marylebone Road
hc <- importAURN(site = "my1", year = 2008, hc = TRUE)

In future, openair functions will recognise AURN data and capture units, thus enabling
plots to be automatically annotated. Furthermore, there is the potential to include lots of
other “meta data” such as site location, site type etc., which will be added to the function
in due couse.

9.3 The importKCL function
King’s College London alsomake available their data in a similar way to the importAURN.
One difference compared to the importAURN is the availability of meteorological data in
London, which is accessible through the option met. We have provided a ‘typical’ meteor-
ological data set representing London, which is a composite of data from several instru-
ments co-located with air pollution monitoring sites. Access to reliable meteorological
data can be difficult and expensive, and this is an issue we hope to improve in time.
The options for importKCL are:

site Site cd of the network site to import e.g. "my1" isMarylebone Road. Several
sites can be imported with site = c("my1", "kc1")— to import Maryle-
bone Road andNorth Kensignton for example.

74

9 Getting data into openair

year Year or years to import. To import a sequence of years from 1990 to 2000
use year = 1990:2000. To import several specfic years use year = c(1990,
1995, 2000) for example.

pollutant Pollutants to import. If omitted will import all pollutants from a site. To
import only NOx andNO2 for example use pollutant = c("nox", "no2").

met Should meteorological data be added to the import data? The default is
FALSE. If TRUEwind speed (m/s), wind direction (degrees), solar radiation and
rain amount are available. See details below.
Access to reliable and freemeteorological data is problematic.

units By default the returned data frame expresses the units inmass terms (ug/m3
for NOx, NO2, O3, SO2; mg/m3 for CO). Use units = "volume" to use
ppb etc. PM10_raw TEOM data are multiplied by 1.3 and PM2.5 have no
correction applied. See details below concerning PM10 concentrations.

Examples of importing data are given in the help files as part of openair. However, the
example below shows how to import data from the Bexley 1 site (code BX1), together with
themeteorological data.
Like the importAURN function the selection is only possible by site code (all the site

codes and full site descriptions are shown in the help file). In time wewill include other
information such as site location and type and develop the functions tomake it easy to use
these other fields.
Below is an example of importing data from the Bexley 1 site.
bx1 <- importKCL(site = "bx1", year = 2000:2009, met = TRUE)

in which case a dialog box will appear prompting the user for a file location. The data
frame mydata is now ready for use in openair.

9.4 Importing data from the CERCADMSmodelling systems
TheADMS suite ofmodels is widely used in theUK and beyond. Thesemodels are used for
a wide range of purposes and one of the benefits of openair is that many of the functions
are potentially useful formodel evaluation. One of the principal benefits of linking openair
with the ADMSmodels is the access to meteorological data that is possible. In the UK, the
Met Office provides meteorological data in a specific format for use in ADMSmodels.9 It
is useful to be able to easily import themeteorological data into openair because analyses
are often limited by the availability of representativemeteorological data. However, the
use of directly measured input data is only one possibility. When ADMSmodels run they
use a sophisticatedmeteorological pre-processor to calculate other quantities that are
not directly measured, but are important to dispersionmodelling. Examples of these other
variables are boundary layer height and surface sensible heat flux. These andmany other
quantities are calculated by themet pre-processor and output to a .MOP file. Access to
these other quantities greatly increases the potential for model evaluation and in general
provides amuch richer source of information for analysis.
Many users may have meteorological data in the ADMS format. This is the format

provided by the UKMetOffice for the ADMSmodel. A an example of the format is shown
in Figure 29, which is a simple text file. The importADMSMet function imports such data
into R in a format suitable for openair.
This can be done, for example by:

9Specifically hourly sequential data and not statistical summaries of data.

75

9 Getting data into openair

Figure 29: Typical format of an hourly ADMSmet file.

met <- importADMS("d:/temp/heathrow01.met")

If no file name is supplied, the user will be prompted for one.
Sometimes it may be necessary to import several years. Here’s one approach for doing

so assuming the files are in a folder d:/metdata and all have a file extension.met:
all.met <- lapply(list.files(path = "d:/metdata", pattern = ".met", full.names = TRUE),

function(.file) importADMS(.file))
all.met <- do.call(rbind.fill, all.met)

all.metwill then contain met data for all years in one data frame.

9.4.1 An example considering atmospheric stability
One of the significant benefits of working with ADMS output files is having access to the
outputs from themeteorological pre-processor. ADMS uses readily available meteorolo-
gical variables such aswind speed, temperature and cloud cover and calculates parameters
that are used in the dispersion algorithms. When ADMS is run it produces a .MOP file
with all these inputs and processed quantities in. Access to parameters such as boundary
layer height, Monin-Obukov length and so on can greatly increase the opportunities for
insightful data analysis using existing openair functions. This is almost certainly an area
wewill cover in more depth later; but for now, here are a few examples.
We are going to use a .MOP file from 2001 following some dispersion modelling of

stacks in London. The interest here is to use the results from the met pre-processor to
better understand sources in the east of London at the Thurrock background site. First, we
can import the Thurrock data (type ?importKCL for site code listing) using the importKCL
function:

tk1 <- importKCL(site = "tk1", year = 2001)

76

9 Getting data into openair

show first few lines of tk1
head(tk1)

date nox no2 o3 so2 co pm10_raw pm10
41862 2001-01-01 00:00:00 NA NA NA NA NA 5.2 5.2
41863 2001-01-01 01:00:00 7.68 5.76 50 46.40 0.232 11.7 11.7
41864 2001-01-01 02:00:00 5.76 3.84 52 57.56 0.232 7.8 7.8
41865 2001-01-01 03:00:00 5.76 3.84 56 14.72 0.232 5.2 5.2
41866 2001-01-01 04:00:00 1.92 1.92 54 10.71 0.232 10.4 10.4
41867 2001-01-01 05:00:00 3.84 1.92 54 10.71 0.232 14.3 14.3
site code
41862 Thurrock - London Road (Grays) TK1
41863 Thurrock - London Road (Grays) TK1
41864 Thurrock - London Road (Grays) TK1
41865 Thurrock - London Road (Grays) TK1
41866 Thurrock - London Road (Grays) TK1
41867 Thurrock - London Road (Grays) TK1

Next we will import the .MOP file. The function automatically lists all the variables
imported:

met <- importADMS("̃ /openair/Data/met01.MOP")

date1 date2 line run
"POSIXct" "POSIXt" "integer" "factor"
fr ws ws.gstar wd
"numeric" "numeric" "numeric" "numeric"
delta.wd ftheta0 k recip.lmo
"numeric" "numeric" "numeric" "numeric"
h nu delta.theta temp
"numeric" "numeric" "numeric" "numeric"
p cl albedo.met albedo.disp
"numeric" "numeric" "numeric" "numeric"
alpha.met alpha.disp tsea delta.t
"numeric" "numeric" "numeric" "numeric"
sigma.theta rhu q0 lambdae
"numeric" "numeric" "numeric" "numeric"
rhu.1 drhdzu process.ws.star process.ws.g
"numeric" "numeric" "numeric" "numeric"
process.ws.gstar process.wd.0 process.wd.g process.delta.wd
"numeric" "numeric" "numeric" "numeric"
process.wd.sec process.wstar process.ftheta0 process.k
"numeric" "numeric" "numeric" "numeric"
process.recip.lmo process.h process.nu process.delta.theta
"numeric" "numeric" "numeric" "numeric"
process.temp process.p process.delta.t process.sigma.theta
"numeric" "numeric" "numeric" "numeric"
process.q0 process.lambdae process.rhu process.drhdzu
"numeric" "numeric" "numeric" "numeric"
process.z0.met process.z0.disp
"numeric" "numeric"

Nowwe need tomerge these two files using ‘date’ as the common field using the merge
function, which is part of the base R system:

tk1 <- merge(tk1, met, by = "date")

Nowwe have a data framewith all the pollutionmeasurements andmeteorological vari-
ablesmatched up. A nice first example is tomake use of variables that are not readily avail-
able. In particular, those representing atmospheric stability are very useful. So, let’s see
what a polar plot looks like split by different levels of the atmospheric stability parameter
the reciprocal of theMonin-Obukov length, 1

LMO
. This has the name process.recip.lmo.

77

9 Getting data into openair

polarPlot(tk1, pollutant = "so2", type = "process.recip.lmo", min.bin = 2)

0
2

4 wind spd.
6

8
10

12

W

S

N

E

process.recip.lmo −0.333 to −0.0009

0
2

4 wind spd.
6

8
10

12

W

S

N

E

process.recip.lmo −0.0009 to 0.0039

0
2

4 wind spd.
6

8
10

12

W

S

N

E

process.recip.lmo 0.0039 to 0.0133

mean

SO2

0

5

10

15

20

Figure 30:Use of the importADMS function to access atmospheric stability parameters for
use in a polar plot. In this case 1

LMO
is split by three different levels, approxim-

ately corresponding to unstable, neutral and stable atmospheric conditions.

Note we also set the option min.bin = 2, to ensure the output is not overly affected by a
single high concentration.
The results are shown in Figure 30. Sowhat does this tell us? Well, first 1

LMO
has been

split into three different levels (broadly speaking the more negative the value of 1
LMOthe more unstable the atmosphere is and the more positive 1

LMO
is, the more stable the

atmosphere is). In Figure 30 the plot showswhat wemight think of unstable, neutral and
stable atmospheric conditions.
The first thing to note from Figure 30 is that lower wind speeds are associated with

stable and unstable atmospheric conditions— shown by the smaller plot areas for these
conditions (neutral conditions have a larger “blob” extending to higher wind speeds). This
is entirely expected. Starting with the unstable conditions (top left panel), SO2 concentra-tions are dominated by easterly and south-easterly winds. These concentrations are likely
dominated by tall stack emissions from those wind directions. For stable conditions (plot
at the bottom), three sources seem to be important. There is a source to the north-east,
the south-east and higher concentrations for very low wind speeds. The latter is likely
due to road vehicle emissions of SO2. The neutral conditions are perhaps revealing twosources to the south-east. Taken together, plotting the data in this way is beginning to
reveal a potentially large number of sources in the area. Combined with the results from a
dispersionmodel, or knowledge of local stacks, there is a good chance that these sources
can be identified.
A polar plot on its own does not reveal such detailed information. Try it:

78

10 The summaryPlot function

polarPlot(tk1, pollutant = "so2")

Of course care does need to be exercised when interpreting these outputs, but the
availability of wider range of meteorological data can only improve inference.
Here are some other analyses (not plotted, but easily run). For NOx :
dominated by stable conditions and low wind speeds (traffic sources)
polarPlot(tk1, pollutant = "nox", type = "process.recip.lmo", min.bin = 2)

PM10:
complex, but dominated by stable/unstable easterly conditions
polarPlot(tk1, pollutant = "pm10", type = "process.recip.lmo", min.bin = 2)

How about the ratio of two pollutants, say the ratio of SO2/NOx? First calculate theratio:
tk1 <- transform(tk1, ratio = so2/nox)
evidence of a source with high so2/nox ratio ro the SSE
polarPlot(tk1, pollutant = "ratio", type = "process.recip.lmo", min.bin = 2)

And don’t forget all the other parameters available such as boundary layer height etc. —
and all the other functions in openair that can be used.

10 The summaryPlot function
The summaryPlot function is a way of rapidly summarising important aspects of data.
While many statistical summaries are possible to calculate with R, the summaryPlot func-
tion has beenwritten specifically for monitoring data. The function provides key graphical
and statistical summaries. summaryPlot has the following options:
mydata A data frame to be summarised. Must contain a date field and at least one

other parameter.
na.len Missing data are only shownwith at least na.len contiguousmissing vales.

The purpose of setting na.len is for clarity: with long time series it is difficult
to see where individual missing hours are. Furthermore, setting na.len =
96, for example would showwhere there are at least 4 days of continuous
missing data.

clip When data contain outliers, the histogram or density plot can fail to show
the distribution of themain body of data. Setting clip = TRUE, will remove
the top 1 better display of the overall distribution of the data. The amount of
clipping can be set with percentile.

percentile This is used to clip the data. For example, percentile = 0.99 (the default)
will remove the top 1 percentile of values i.e. values greater than the 99th
percentile will not be used.

type type is used to determinewhether a histogram (the default) or a density plot
is used to show the distribution of the data.

pollutant pollutant is used when there is a field site and there is more than one site
in the data frame.

period period is either year (the default) or month. Statistics are calculated depend-
ing on the period chosen.

79

10 The summaryPlot function

breaks Number of histogrambins. Sometime useful but not easy to set a single value
for a range of very different variables.

col.trend Colour to be used to show themonthly trend of the data, shown as a shaded
region. Type colors() into R to see the full range of colour names.

col.data Colour to be used to show the presence of data. Type colors() into R to see
the full range of colour names.

col.mis Colour to be used to showmissing data.
col.hist Colour for the histogram or density plot.
cols Predefined colour scheme, currently only enabled for "greyscale".
date.breaks Number of major x-axis intervals to use. The function will try and choose a

sensible number of dates/times as well as formatting the date/time appropri-
ately to the range being considered. This does not always work as desired
automatically. The user can therefore increase or decrease the number of
intervals by adjusting the value of date.breaks up or down.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically
try and format pollutant names and units properly e.g. by subscripting the ‘2’
in NO2.

... Other graphical parameters. Commonly used examples include the axis and
title labelling options (such as xlab, ylab and main), which are all passed
to the plot via quickText to handle routine formatting. As summaryPlot
has two components, the axis labels may be a vector. For example, the de-
fault case (type = "histogram") sets y labels equivalent to ylab = c("",
"Percent of Total").

It is called in a very simple way:10the
summaryPlot

function
should be used
for checking
input data
before

applying other
functions

An example of using summaryPlot shown in Figure 31. For each numerical variable in a
data frame, a plot is made, shown in the left panel, showing where data exist (blue) and
missing data (red). For clarity, only running sequences of≥ 24 hours of missing data are
shown. It is easy to see therefore that the beginning part of the time series for PM2.5is missing and the end part of SO2. It is also clear that the time series stops half waythrough 2005. Also shown in each panel are statistical summaries, which include: number
of missing points (with percentage shown in parentheses), minimum, maximum, mean,
median and the 95th percentile. For each year, the data capture (%) is shown in green font.
So, for example, the data capture for NOx in 2000was 96.3 %.The pale yellow line gives an indication of the variation in values over time expressed as
a daily mean. It is in indication because no numerical scale is given. The data are formatted
so that 0 is placed at the lower part of the scale (top of the data indicator strip) and the
maximum value at the top of the graph. The intention is to give the user a feel for how the
data vary over the length of the time series.
The plots shown in the right panel are histograms. It is also possible to show density plots.

A density plot is somewhat similar to a histogram but avoids having to arbitrarily select a
“bin” size. The choice of bin size in histograms can often lead to amisleading impression of
how data are distributed— simply because of the bin size chosen. The default behaviour
of this function “clips” the data and excludes the highest 1 % of values. This is done to help
10Note that a data frame mydata is automatically loaded when loading the openair package. The data set
consists of several years of pollutant data fromMarylebone Road in London.

80

10 The summaryPlot function

library(openair) # load openair
data(mydata) ## make sure data that comes with openair is loaded
summaryPlot(mydata)

date1 date2 ws wd nox no2 o3 pm10
"POSIXt" "POSIXct" "numeric" "integer" "integer" "integer" "integer" "integer"
so2 co pm25
"numeric" "numeric" "integer"

date

1998 1999 2000 2001 2002 2003 2004 2005

missing = 5221 (7.4%)
min = −0.2
max = 20.2

mean = 4.5
median = 4.1

95th percentile = 9

96.5 % 98.3 % 98.7 % 99.8 % 99.9 % 100 % 100 % 47.2 %

w
in

d
sp

d.

missing = 4814 (6.9%)
min = 0
max = 360

mean = 200
median = 210

95th percentile = 340

98.6 % 99.7 % 100 % 99.9 % 99.7 % 100 % 100 % 47.2 %

w
in

d
di

r.

missing = 7018 (10%)
min = 0
max = 1144

mean = 178.8
median = 153

95th percentile = 414

97.5 % 93 % 96.3 % 93.8 % 98.5 % 93.7 % 99.9 % 47.2 %

N
O

x

missing = 7033 (10%)
min = 0
max = 206

mean = 49.1
median = 46

95th percentile = 93

97.5 % 93 % 96.3 % 93.8 % 98.5 % 93.7 % 99.8 % 47.2 %

N
O

2

missing = 7181 (10.2%)
min = −1
max = 70

mean = 7.1
median = 4

95th percentile = 23

86.8 % 95.6 % 98.8 % 96.3 % 97 % 96.3 % 100 % 47.2 %

O
3

missing = 6756 (9.6%)
min = −1
max = 801

mean = 34.4
median = 31

95th percentile = 64

98.5 % 94.8 % 98.6 % 89.1 % 98.1 % 98.7 % 98 % 47.1 %

P
M

10

missing = 14629 (20.9%)
min = −2.2
max = 63.2

mean = 4.8
median = 4

95th percentile = 11.3

94.1 % 95.5 % 95.9 % 84.7 % 96.5 % 96.1 % 70.4 % 0 %

S
O

2

missing = 6524 (9.3%)
min = 0
max = 19.7

mean = 1.5
median = 1.1

95th percentile = 3.7

98.4 % 95.4 % 95.9 % 96.4 % 97.5 % 98.4 % 96.2 % 47.3 %

C
O

missing = 13369 (19.1%)
min = −1
max = 398

mean = 21.7
median = 20

95th percentile = 43

55.3 % 82.2 % 89.8 % 90.3 % 92.9 % 93.3 % 95.9 % 47.5 %

P
M

2.
5

value

P
er

ce
nt

 o
f T

ot
al

0
4
8

0 2 4 6 8 10 12

0
4
8

12

0 100 200 300

0
4
8

12

0 100 300 500

0
5

10

0 20 40 60 80 120

0
10
20
30

0 10 20 30

0
4
8

12

0 20 40 60 80

0
5

10

0 5 10 15

0
5

10
15

0 1 2 3 4 5

0
4
8

12

0 10 20 30 40 50

Figure 31:Use of summaryPlot function applied to the mydata data frame. The plots in
the left panel show the time series data, where blue shows the presence of
data and redmissing data. The daily mean values are also shown in pale yellow
scaled to cover the range in the data from zero to themaximum daily value. As
such, the daily values are indicative of an overall trend rather than conveying
quantitative information. For each pollutant, the overall summary statistics are
given. For each year the percentage data capture is shown in green font. The
panels on the right show the distribution of each species using a histogram plot.

81

11 The cutData function

highlight the shape of the bulk of the data and has the effect of removing the long tail,
typical of air pollution concentration distributions.
It is possible, however, not to clip the histogram or density plot data and select various

other options:
summaryPlot(mydata, clip = FALSE) # do not clip density plot data

summaryPlot(mydata, percentile = 0.95) # exclude highest 5 % of data etc.

show missing data where there are at least 10 continuous missing values
summaryPlot(mydata, na.len = 10)

summaryPlot(mydata, col.data = "green") # show data in green

summaryPlot(mydata, col.mis = "yellow") # show missing data in yellow

summaryPlot(mydata, col.dens = "black") # show density plot line in black

Depending on the data available, there may be too many plots shown on one page,
making it difficult to see the detail. Currently, the simplest way to reduce what is shown is
to limit the data to be plotted. In the code below, for example, only columns 2 and 5 – 7
are plotted (column 1 in this case is the date andmust always be supplied). Alternatively,
the subset function could be used:

summaryPlot(mydata[, c(1, 2, 5:7)]) # only plot columns 2 and 5-7
summaryPlot(subset(mydata, select = c(date, nox, no2, co))) # alternative selecting

So far the summaryPlot function has been described and used in terms of plotting
many variables from a single site. What happens if there is more than one site? Because
the plot already produces a dense amount of information it does not seem sensible to
plot several variables across several sites at the same time. Therefore, if there is a site
field, summaryPlot will provide summary data for a single pollutant across all sites. See
?summaryPlot for more details.

Use summaryPlot first
It is recommended that the summaryPlot function is used before moving
on to using the other functions detailed below. One of the reasons (apart
from getting to know your data) is that it also acts as a way of ensuring that
other functions should work. For example, if wind speed was missing, or was
formatted as a character rather than a number, it will not show up in the
summary plot. In time we intend to use this function to carry out many data
checks and issue warnings if problems are detected.

11 The cutData function
The cutData function is a utility function that is called bymost other functions but is useful
in its own right. It’s main use is to partition data in manyways, many of which are built-in
to openair.
For example, to cut data into seasons:

82

11 The cutData function

mydata <- cutData(mydata, type = "season")
head(mydata)

date ws wd nox no2 o3 pm10 so2 co pm25 nox.all year
1 1998-01-01 00:00:00 0.60 280 285.0 39 1 29 4.723 3.373 NA 285.0 1998
2 1998-01-01 01:00:00 2.16 230 354.3 NA NA 37 NA NA NA 354.3 1998
3 1998-01-01 02:00:00 2.76 190 423.7 NA 3 34 6.830 9.602 NA 423.7 1998
4 1998-01-01 03:00:00 2.16 170 493.0 52 3 35 7.662 10.217 NA 493.0 1998
5 1998-01-01 04:00:00 2.40 180 468.0 78 2 34 8.070 8.912 NA 468.0 1998
6 1998-01-01 05:00:00 3.00 190 264.0 42 0 16 5.505 3.053 NA 264.0 1998
season
1 winter (DJF)
2 winter (DJF)
3 winter (DJF)
4 winter (DJF)
5 winter (DJF)
6 winter (DJF)

This adds anewfield “season” that is split into fourquantiles. There is anoptionhemisphere
that canbeused touse southernhemisphere seasonswhen set ashemisphere = “southern”.
The type can also be another field in a data frame e.g.
mydata <- cutData(mydata, type = "pm10")
head(mydata)

date ws wd nox no2 o3 pm10 so2 co pm25
1 1998-01-01 00:00:00 0.60 280 285.0 39 1 pm10 22 to 31 4.723 3.373 NA
2 1998-01-01 01:00:00 2.16 230 354.3 NA NA pm10 31 to 44 NA NA NA
3 1998-01-01 02:00:00 2.76 190 423.7 NA 3 pm10 31 to 44 6.830 9.602 NA
4 1998-01-01 03:00:00 2.16 170 493.0 52 3 pm10 31 to 44 7.662 10.217 NA
5 1998-01-01 04:00:00 2.40 180 468.0 78 2 pm10 31 to 44 8.070 8.912 NA
6 1998-01-01 05:00:00 3.00 190 264.0 42 0 pm10 -1 to 22 5.505 3.053 NA
nox.all year season
1 285.0 1998 winter (DJF)
2 354.3 1998 winter (DJF)
3 423.7 1998 winter (DJF)
4 493.0 1998 winter (DJF)
5 468.0 1998 winter (DJF)
6 264.0 1998 winter (DJF)

data(mydata) ## re-load my data fresh

This divides PM10 concentrations into four quantiles — roughly equal numbers of PM10concentrations in four levels.
Most of the time users do not have to call cutData directly becausemost functions have

a type option that is used to call cutData directly e.g.
polarPlot(mydata, pollutant = "so2", type = "season")

However, it can be useful to call cutData before supplying the data to a function in a few
cases. First, if onewants to set seasons to the southern hemisphere as above. Second, it
is possible to override the division of a numeric variable into four quantiles by using the
option n.levels. More details can be found in the cutData help file.
The cutData function has the following options:

x A data frame containing a field date.
type A string giving theway in which the data frame should be split. Pre-defined

values are: "default", "year", "hour", "month", "season", "weekday", "ws", "site",
"weekend", "monthyear", "daylight", "gmtbst" or "bstgmt".

83

12 The windRose and pollutionRose functions

type can also be the name of a numeric or factor. If a numeric column name
is supplied cutDatawill split the data into four quantiles. Factors levels will
be used to split the data without any adjustment.

hemisphere Can be "northern" or "southern", used to split data into seasons.
n.levels Number of quantiles to split numeric data into.
is.axis A logical (TRUE/FALSE), used to request shortened cut labels for axes.
local.hour.offset,latitude,longitude Parameters used by cutDaylight to estim-

ate if the measurement was collected during daylight or nighttime hours.
local.hour.offset gives the measurement timezone and latitude and
longitude give themeasurement location. NOTE: The default settings for
these three parameters are the LondonMarylebone Road AURN site asso-
ciated with the mydata example data set. See ...{} and Details below for
further information.

... All additional parameters are passed on to next function(s). For example,
with cutData all additional parameters are passed on to cutDaylight allow-
ing direct access to cutDaylight via either cutData or any openair using
cutData for type conditioning.

12 The windRose and pollutionRose functions
12.1 Purpose

see also
polarFreq per-
centileRose

Thewind rose is a very useful way of summarisingmeteorological data. It is particularly
useful for showing how wind speed and wind direction conditions vary by year. The
windRose function can plot wind roses in a variety of ways: summarising all available wind
speed andwind direction data, plotting individual wind roses by year, and also bymonth.
The latter is useful for considering howmeteorological conditions vary by season.
Data are summarised by direction, typically by 45 or 30° and by different wind speed

categories. Typically, wind speeds are represented by different width ‘paddles’. The plots
show the proportion (here represented as a percentage) of time that thewind is from a
certain angle andwind speed range.
The windRose function also calculates the percentage of “calms” i.e. when the wind

speed is zero. UKMetOffice data assigns these periods to 0 degrees wind direction with
valid northerly winds being assigned to 360 degrees.

12.2 Options available
The windRose function has the following options:
mydata A data frame containing fields ws and wd
ws Name of the column representing wind speed.
wd Name of the column representing wind direction.
ws.int TheWind speed interval. Default is 2 m/s but for low met masts with low

meanwind speeds a value of 1 or 0.5 m/s may be better. Note, this argument
is superseded in pollutionRose. See breaks below.

84

12 The windRose and pollutionRose functions

angle Default angle of "spokes" is 30. Other potentially useful angles are 45 and
10. Note that the width of the wind speed interval may need adjusting using
width.

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can be one
of the built-in types as detailed in cutData e.g. "season", "year", "weekday"
and so on. For example, type = "season"will produce four plots — one for
each season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable,
then those categories/levels will be used directly. This offers great flexibility
for understanding the variation of different variables and how they depend
on one another.
Type can be up length two e.g. type = c("season", "weekday")will pro-
duce a 2x2 plot split by season and day of theweek. Note, when two types
are provided the first forms the columns and the second the rows.

cols Colours to be used for plotting. Options include default, increment, heat,
jet, hue and user defined. For user defined the user can supply a list of colour
names recognised by R (type colours() to see the full list). An example
would be cols = c("yellow", "green", "blue", "black").

grid.line Grid line interval to use. If NULL, as in default, this is assigned by windRose
based on the available data range. However, it can also be forced to a specific
value, e.g. grid.line = 10.

width For paddle = TRUE, the adjustment factor for width of wind speed intervals.
For example, width = 1.5will make the paddle width 1.5 times wider.

seg ForpollutionRosesegdetermineswithwidthof the segments. For example,
seg = 0.5will produce segments 0.5 * angle.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically
try and format pollutant names and units properly e.g. by subscripting the ‘2’
in NO2.

breaks Most commonly, the number of break points for wind speed in windRose or
pollutant in pollutionRose. For windRose and the ws.int default of 2m/s,
the default, 4, generates the break points 2, 4, 6, 8 m/s. For pollutionRose,
the default, 6, attempts to breaks the supplied data at approximately 6 sens-
ible break points. However, breaks can also be used to set specific break
points. For example, the argument breaks = c(1, 10, 100) breaks the
data into segments <1, 1-10, 10-100, >100.

offset The size of the ’hole’ in themiddle of the plot, expressed as a percentage of
the polar axis scale, default 10.

paddle Either TRUE (default) or FALSE. If TRUE plots rose using ‘paddle’ style spokes.
If FALSE plots rose using ‘wedge’ style spokes.

key.header Adds additional text/labels above and/or below the scale key, respectively.
For example, passing windRose(mydata, key.header = "ws") adds the ad-
dition text as a scale header. Note: This argument is passed to drawOpenKey
via quickText, applying the auto.text argument, to handle formatting.

85

12 The windRose and pollutionRose functions

key.footer see key.footer.
key.position Location where the scale key is to plotted. Allowed arguments currently

include "top", "right", "bottom" and "left".
key Fine control of the scale key via drawOpenKey. See drawOpenKey for further

details.
dig.lab The number of signficant figures at which scientific number formatting is

used in break point and key labelling. Default 5.
statistic The statistic to be applied to each data bin in the plot. Options cur-

rently include "prop.count", "prop.mean" and "abs.count". The default
"prop.count" sizes bins according to the proportion of the frequency of
measurements. Similarly, prop.mean sizes bins according to their relative
contribution to themean. "abs.count" provides the absolute count ofmeas-
urements in each bin.

pollutant Alternative data series to be sampled instead of wind speed. The windRose
default NULL is equivalent to pollutant = "ws".

annotate If TRUE then the percentage calm andmean values are printed in each panel.
... For pollutionRose other parameters that are passed on to windRose. For

windRoseotherparameters that arepassedon todrawOpenKey, lattice:xyplot
and cutData. Axis and title labelling options (xlab, ylab, main) are passed to
xyplot via quickText to handle routine formatting.

12.3 Example of use
The function is very simply called as shown for Figure 32.
Figure 33 highlights some interesting differences between the years. In 2000, for

example, there were a large number of occasions when thewindwas from the SSWand
2003 clearly hadmore occasions when the windwas easterly. It can also be useful to use
type = “month” to get an idea of howwind speed and direction vary seasonally.
The type option is very flexible in openair and can be used to quickly consider the

dependencies between variables. section 11 describes the basis of this option in openair
plot. As an example, consider the question: what are themeteorological conditions that
control high and low concentrations of PM10? By setting type = "pm10", openairwill split
the PM10 concentrations into four quantiles i.e. roughly equal numbers of points in eachlevel. The plot will then show four different wind roses for each quantile level, although
the default number of levels can be set by the user — see ?cutData for more details.
Figure 34 shows the results of setting type = "pm10". For the lowest concentrations of
PM10 the wind direction is dominated by northerly winds, and relatively lowwind speeds.By contrast, the highest concentrations (plot furthest right) are dominated by relatively
strongwinds from the south-west. It is therefore very easy to obtain a good idea about the
conditions that tend to lead to high (or low) concentrations of a pollutant. Furthermore,
the type option is available in almost all openair functions.
pollutionRose is a variant of windRose that is useful for considering pollutant concen-

trations by wind direction, or more specifically the percentage time the concentration is in
a particular range. This type of approach can be very informative for air pollutant species,
as demonstrated by Ronald Henry and co-authors in a recent paper (Henry et al., 2009).
You can produce similar pollution roses using the pollutionRose function in recent

versions of openair, e.g. as in Figure 35:

86

12 The windRose and pollutionRose functions

windRose(mydata)

Frequency of counts by wind direction (%)

5%

10%

15%

20%

25%

mean = 4.49

calm = 0.1%

0−2 2−4 4−6 6−20.16

(m s−1)

Figure 32:Use of windRose function to plot wind speed/direction frequencies. Wind
speeds are split into the intervals shown by the scale in each panel. The grey
circles show the% frequencies.

pollutionRose iswrapper for windRose. It simply replaces thewind speed data series in
the supplied data set with another variable using the argument pollutant before passing
that on to windRose. It alsomodifies breaks to estimate a sensible set of break points for
that pollutant and uses a slightly different set of default options (key to right, wedge style
plot) but otherwise handles arguments just like the parent windRose function.
While Figure 35 indicates thatmost higherNOx concentrations are also associatedwiththe SW, conditioning allows you to be much informative. For example, conditioning by

SO2 (Figure 36) demonstrates that higher NOx concentrations are associated with theSW andmuch of the higher SO2 concentrations. However, it also highlights a notable NOxcontribution from the E, most apparent at highest SO2 concentrations that is obscured inFigure 35 by a relatively high NOx background (Figure 36).
pollutionRose can also usefully be used to showwhich wind directions dominate the

overall concentrations. By supplying the option statistic = "prop.mean" (proportion
contribution to the mean), a good idea can be gained as to which wind directions con-
tributemost to overall concentrations, as well as providing information on the different
concentration levels. A simple plot is shown in Figure 37, which clearly shows the dom-
inance of south-westerly winds controlling the overall meanNOx concentrations at thissite. Indeed, almost half the overall NOx concentration is contributed by twowind sectorsto the south-west. The polarFreq function can also show this sort of information, but
the pollution rose is more effective because both length and colour are used to show the
contribution. These plots are very useful for understanding which wind directions control
the overall mean concentrations.

87

12 The windRose and pollutionRose functions

windRose(mydata, type = "year", layout = c(4, 2))

Frequency of counts by wind direction (%)

5%
10%

15%
20%

25%
30%

35%
40%

mean = 4.38

calm = 0.2%

1998

5%
10%

15%
20%

25%
30%

35%
40%

mean = 4.6

calm = 0%

1999

5%
10%

15%
20%

25%
30%

35%
40%

mean = 4.8

calm = 0.1%

2000

5%
10%

15%
20%

25%
30%

35%
40%

mean = 4.21

calm = 0%

2001

5%
10%

15%
20%

25%
30%

35%
40%

mean = 5.05

calm = 0%

2002

5%
10%

15%
20%

25%
30%

35%
40%

mean = 4.31

calm = 0.1%

2003

5%
10%

15%
20%

25%
30%

35%
40%

mean = 4.15

calm = 0%

2004

5%
10%

15%
20%

25%
30%

35%
40%

mean = 4.36

calm = 0%

2005

0−2 2−4 4−6 6−20.16

(m s−1)

Figure 33:Use of windRose function to plot wind speed/direction frequencies by year.
Wind speeds are split into the intervals shown by the scale in each panel. The
grey circles show the 10 and 20% frequencies.

windRose(mydata, type = "pm10", layout = c(4, 1))

Frequency of counts by wind direction (%)

5%
10%

15%
20%

25%
30%

35%
40%

45%

mean = 4.37

calm = 0%

PM10 −1 to 22

5%
10%

15%
20%

25%
30%

35%
40%

45%

mean = 4.32

calm = 0.1%

PM10 22 to 31

5%
10%

15%
20%

25%
30%

35%
40%

45%

mean = 4.64

calm = 0%

PM10 31 to 44

5%
10%

15%
20%

25%
30%

35%
40%

mean = 4.61

calm = 0.1%

PM10 44 to 801

0−2 2−4 4−6 6−20.16

(m s−1)

Figure 34:Wind rose for four different levels of PM10 concentration. The levels aredefined as the four quantiles of PM10 concentration and the ranges are shownon each of the plot labels.

88

12 The windRose and pollutionRose functions

pollutionRose(mydata, pollutant = "nox")

Frequency of counts by wind direction (%)

5%

10%

15%

20%

25%

mean = 179

calm = 0.1%

NOx

0−50

50−100

100−150

150−200

200−250

250−300

300−350

350−1092

Figure 35:NOx pollution roseproducedusingpollutionRose anddefaultpollutionRosesettings.

pollutionRose(mydata, pollutant = "nox", type = "so2", layout = c(4, 1))

Frequency of counts by wind direction (%)

5%
10%

15%
20%

25%
30%

35%
40%

mean = 69.7

calm = 0.1%

SO2 −2.17 to 2.07

5%
10%

15%
20%

25%
30%

35%
40%

mean = 134

calm = 0%

SO2 2.07 to 4

5%
10%

15%
20%

25%
30%

35%
40%

mean = 211

calm = 0%

SO2 4 to 6.5

5%
10%

15%
20%

25%
30%

35%
40%

mean = 312

calm = 0.1%

SO2 6.5 to 63.2

NOx

0−50
50−100
100−150
150−200
200−250
250−300
300−350
350−1092

Figure 36:NOx pollution rose conditioned by SO2 concentration.

pollutionRose(mydata, pollutant = "nox", statistic = "prop.mean")

Proportion contribution to the mean (%)

5%

10%

15%

20%

25%

30%

35%

40%

mean = 179

calm = 0.1%

NOx

0−50

50−100

100−150

150−200

200−250

250−300

300−350

350−1092

Figure 37: Pollution rose showing which wind directions contributemost to overall mean
concentrations.

89

13 The percentileRose function

13 The percentileRose function
13.1 Purpose

see also
windRose,
polarPlot

pollutionRose
polarAnnulus

percentileRose calculates percentile levels of a pollutant and plots them bywind direc-
tion. One or more percentile levels can be calculated and these are displayed as either
filled areas or as lines.
The levels by wind direction are calculated using a cyclic smooth cubic spline. The wind

directions are rounded to the nearest 10 degrees, consistent with surface data from the
UKMetOffice before a smooth is fitted.
The percentileRose function compliments other similar functions including windRose,

pollutionRose, polarFreq or polarPlot. It is most useful for showing the distribution of
concentrations by wind direction and often can reveal different sources e.g. those that
only affect high percentile concentrations such as a chimney stack.
Similar to other functions, flexible conditioning is available through the type option. It

is easy for example to consider multiple percentile values for a pollutant by season, year
and so on. See examples below.

13.2 Options available
The percentileRose function has the following options:
mydata Adata frameminimally containingwd andanumericfield toplot—pollutant.
pollutant Mandatory. A pollutant name corresponding to a variable in a data frame

should be supplied e.g. pollutant = "nox". More than one pollutant can
be supplied e.g. pollutant = c("no2", "o3") provided there is only one
type.

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can be one
of the built-in types as detailed in cutData e.g. "season", "year", "weekday"
and so on. For example, type = "season"will produce four plots — one for
each season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable,
then those categories/levels will be used directly. This offers great flexibility
for understanding the variation of different variables and how they depend
on one another.
Type can be up length two e.g. type = c("season", "weekday")will pro-
duce a 2x2 plot split by season and day of theweek. Note, when two types
are provided the first forms the columns and the second the rows.

percentile The percentile value(s) to plot. Must be between 0–100.
cols Colours to be used for plotting. Options include "default", "increment", "heat",

"jet" and user defined. For user defined the user can supply a list of colour
names recognised by R (type colours() to see the full list). An example
would be cols = c("yellow", "green", "blue").

fill Should the percentile intervals be filled (default) or should lines be drawn
(fill = FALSE).

90

13 The percentileRose function

intervals User-supplied intervals for the scale e.g. intervals = c(0, 10, 30, 50)

angle.scale The pollutant scale is by default shown at a 45 degree angle. Sometimes
the placement of the scale may interfere with an interesting feature. The
user can therefore set angle.scale to another value (between 0 and 360
degrees) to mitigate such problems. For example angle.scale = 315will
draw the scale heading in a NWdirection.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically
try and format pollutant names and units properly e.g. by subscripting the ‘2’
in NO2.

key.header Adds additional text/labels to the scale key. For example, passing options
key.header = "header", key.footer = "footer"adds addition text above
and below the scale key. These arguments are passed to drawOpenKey via
quickText, applying the auto.text argument, to handle formatting.

key.footer key.header.
key.position Location where the scale key is to plotted. Allowed arguments currently

include "top", "right", "bottom" and "left".
key Fine control of the scale key via drawOpenKey. See drawOpenKey for further

details.
... Other graphical parameters are passed onto cutData and lattice:xyplot.

For example, percentileRosepasses theoptionhemisphere = "southern"
on tocutData toprovide southern (rather thandefault northern) hemisphere
handling of type = "season". Similarly, common graphical arguments, such
as xlim and ylim for plotting ranges and lwd for line thickness when using
fill = FALSE, are passed on xyplot, although some localmodificationsmay
be applied by openair. For example, axis and title labelling options (such as
xlab, ylab and main) are passed to xyplot via quickText to handle routine
formatting.

13.3 Example of use
The first example is a basic plot of percentiles of O3 shown in Figure 38.A slightly more interesting plot is shown in Figure 39 for SO2 concentrations. We alsotake the opportunity of changing some of the default options. In this case it can be clearly
seen that the highest concentrations of SO2 are dominated by east and south-easterlywinds; likely reflecting the influence of stack emissions in those directions.
Lots more insight can be gained by considering how percentile values vary by other

factors i.e. conditioning. For example, what doO3 concentrations look like split by seasonandwhether it is daylight or nighttime hours? We can set the type to consider season and
whether it is daylight or nighttime.11 This Figure reveals some interesting features. First,
O3 concentrations are higher in the spring and summer and when the wind is from thenorth. O3 concentrations are higher on average at this site in spring due to the peak ofnorthern hemispheric O3 and to some extent local production. This may also explain whyO3 concentrations are somewhat higher at nighttime in spring compared with summer.Second, peakO3 concentrations are higher during daylight hours in summertimewhen
11In choosing type = “daylight” the default is to consider a latitude of central London (or close to). Users
can set the latitude in the function call if working in other parts of the world.

91

13 The percentileRose function

percentileRose(mydata, pollutant = "o3")

O3

W

S

N

E
−10

0

10

20

30

40

0−25 25−50 50−75 75−90 90−95
percentile

Figure 38:A percentileRose plot of O3 concentrations at Marylebone Road. The per-centile intervals are shaded and are shown by wind direction. It shows for
example that higher concentrations occur for northerly winds, as expected at
this location. However, it also shows, for example the actual value of the 95th
percentile O3 concentration.

percentileRose(mydata, pollutant = "so2", percentile = c(25, 50, 75, 90,
95, 99, 99.9), col = "brewer1", key.position = "right")

SO2

W

S

N

E
−10

0

10

20

30

40

50

percentile

0−25

25−50

50−75

75−90

90−95

95−99

99−99.9

Figure 39:A percentileRose plot of SO2 concentrations atMarylebone Road. The per-centile intervals are shaded and are shown by wind direction. This plot sets
some user-defined percentile levels to consider the higher SO2 concentrations,moves the key to the right and uses an alternative colour scheme.

92

14 The polarFreq function

percentileRose(mydata, type = c("season", "daylight"), pollutant = "o3",
col = "Set1")

O3

W

S

N

E
−10

0

10

20

30

40

spring (MAM)
da

yl
ig

ht

O3

W

S

N

E
−10

0

10

20

30

40

summer (JJA)

da
yl

ig
ht

O3

W

S

N

E
−10

0

10

20

30

40

autumn (SON)

da
yl

ig
ht

O3

W

S

N

E
−10

0

10

20

30

40

winter (DJF)

da
yl

ig
ht

O3

W

S

N

E
−10

0

10

20

30

40

spring (MAM)

ni
gh

tti
m

e

O3

W

S

N

E
−10

0

10

20

30

40

summer (JJA)
ni

gh
tti

m
e

O3

W

S

N

E
−10

0

10

20

30

40

autumn (SON)

ni
gh

tti
m

e

O3

W

S

N

E
−10

0

10

20

30

40

winter (DJF)

ni
gh

tti
m

e

0−25 25−50 50−75 75−90 90−95
percentile

Figure 40:A percentileRose plot of O3 concentrations at Marylebone Road. The per-centile intervals are shaded and are shown by wind direction.The plot show the
variation by season andwhether it is nighttime or daylight hours.

the wind is from the south-east. This will be due tomore local (UK/European) production
that is photochemically driven— and hencemore important during daylight hours.

14 The polarFreq function
14.1 Purpose

see also
windRose per-
centileRose
polarPlot

This is a custom-made plot to compactly show the distribution of wind speeds and direc-
tions frommeteorological measurements. It is similar to the traditional wind rose, but
includes a number of enhancements to also show how concentrations of pollutants and
other variables vary. It can summarise all available data, or show it by different time
periods e.g. by year, month, day of the week. It can also consider a wide range of statistics.

14.2 Options available
The polarFreq function has the following options:
mydata A data frameminimally containing ws, wd and date.
pollutant Mandatory. A pollutant name corresponding to a variable in a data frame

should be supplied e.g. pollutant = "nox"

statistic The statistic that should be applied to each wind speed/direction bin. Can
be "frequency", "mean", "median", "max" (maximum), "stdev" (standard de-
viation) or "weighted.mean". The option "frequency" (the default) is the

93

14 The polarFreq function

simplest and plots the frequency of wind speed/direction in different bins.
The scale therefore shows the counts in each bin. The option "mean"will plot
themeanconcentrationof apollutant (seenext point) inwind speed/direction
bins, and so on. Finally, "weighted.mean" will plot the concentration of a pol-
lutant weighted bywind speed/direction. Each segment therefore provides
the percentage overall contribution to the total concentration. More inform-
ation is given in the examples. Note that for options other than "frequency",
it is necessary to also provide the name of a pollutant. See function cutData
for further details.

ws.int Wind speed interval assumed. In some cases e.g. a lowmetmast, an interval
of 0.5 may bemore appropriate.

grid.line Radial spacing of grid lines.
breaks The user can provide their own scale. breaks expects a sequence of numbers

that define the range of the scale. The sequence could represent one with
equal spacing e.g. breaks = seq(0, 100, 10) - a scale from 0-10 in inter-
vals of 10, or a more flexible sequence e.g. breaks = c(0, 1, 5, 7, 10),
whichmay be useful for some situations.

cols Colours to be used for plotting. Options include "default", "increment", "heat",
"jet" and user defined. For user defined the user can supply a list of colour
names recognised by R (type colours() to see the full list). An example
would be cols = c("yellow", "green", "blue")

trans Should a transformation be applied? Sometimes when producing plots of
this kind they can be dominated by a few high points. The default therefore
is TRUE and a square-root transform is applied. This results in a non-linear
scale and (usually) a better representation of the distribution. If set to FALSE
a linear scale is used.

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can be one
of the built-in types as detailed in cutData e.g. "season", "year", "weekday"
and so on. For example, type = "season"will produce four plots — one for
each season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable,
then those categories/levels will be used directly. This offers great flexibility
for understanding the variation of different variables and how they depend
on one another.
Type can be up length two e.g. type = c("season", "weekday")will pro-
duce a 2x2 plot split by season and day of theweek. Note, when two types
are provided the first forms the columns and the second the rows.

min.bin Theminimum number of points allowed in a wind speed/wind direction bin.
The default is 1. A value of two requires at least 2 valid records in each bin an
so on; bins with less than 2 valid records are set to NA. Care should be taken
when using a value > 1 because of the risk of removing real data points. It is
recommended to consider your data with care. Also, the polarPlot function
can be of use in such circumstances.

94

14 The polarFreq function

ws.upper A user-defined upper wind speed to use. This is useful for ensuring a consist-
ent scale between different plots. For example, to always ensure that wind
speeds are displayed between 1-10, set ws.int = 10.

offset offset controls the size of the ’hole’ in the middle and is expressed as a
percentage of themaximumwind speed. Setting a higher offset e.g. 50 is
useful for statistic = "weighted.mean"when ws.int is greater than the
maximumwind speed. See example below.

border.col The colour of the boundary of each wind speed/direction bin. The default is
transparent. Another useful choice sometimes is "white".

key.header,key.footer Addsadditional text/labels to the scale key. For example, passing
options key.header = "header", key.footer = "footer" adds addition
text aboveandbelow the scale key. Thesearguments arepassed todrawOpenKey
via quickText, applying the auto.text argument, to handle formatting.

key.position Location where the scale key is to plotted. Allowed arguments currently
include "top", "right", "bottom" and "left".

key Fine control of the scale key via drawOpenKey. See drawOpenKey for further
details.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically
try and format pollutant names and units properly e.g. by subscripting the ‘2’
in NO2.

... Other graphical parameters passed onto lattice:xyplot and cutData. For
example, polarFreqpasses theoptionhemisphere = "southern"on tocutData
to provide southern (rather than default northern) hemisphere handling of
type = "season". Similarly, common axis and title labelling options (such
as xlab, ylab, main) are passed to xyplot via quickText to handle routine
formatting.

For type = “site”, it is necessary to format the input data into columns date, ws, wd, site
(andmaybe pollutant). This means that date, for example is repeated a number of times
equal to the number of sites.

14.3 Example of use
This section shows an example output and use, using our data frame mydata. The function
is very simply run as shown in Figure 41. This produces the plot shown in Figure 41.
By setting type = “year”, the frequencies are shown separately by year as shown in

Figure 42, which shows that most of the time the wind is from a south-westerly direction
with wind speeds most commonly between 2–6 m s−1. In 2000 there seemed to be a
lot of conditions where the wind was from the south-west (leading to high pollutant
concentrations at this location). The data for 2003 also stand out due to the relatively
large number of occasions where the wind was from the east. Note the default colour
scale, which has had a square-root transform applied, is used to provide a better visual
distribution of the data.
The polarFreq function can also usefully consider pollutant concentrations. Figure 43

shows the mean concentration of SO2 by wind speed and wind direction and clearlyhighlights that SO2 concentrations tend to be highest for easterly winds and for 1998 inparticular.

95

14 The polarFreq function

polarFreq(mydata)

0

5

10

15

20

25

30

35

40

45

W

S

N

E

frequency

0

50

100

150

200
250
300
350
400
450
500
550
600
650

Figure 41:Use of polarFreq function to plot wind speed/directions. Each cell gives the
total number of hours the wind was from that wind speed/direction in a par-
ticular year. The number of hours is coded as a colour scale shown to the right.
The scale itself is non-linear to help show the overall distribution. The dashed
circular grey lines show thewind speed scale. The date range covered by the
data is shown in the strip. The strip can be removed by setting strip = FALSE in
the function call.

Byweighting the concentrations by the frequency of occasions thewind is froma certain
direction and has a certain speed, gives a better indication of the conditions that dominate
the overall mean concentrations. Figure 44 shows theweightedmean concentration of
SO2 and highlights that annual mean concentrations are dominated by south-westerlywinds i.e. contributions from the road itself — and not by the fewer higher hours of
concentrations when the wind is easterly. However, 2003 looks interesting because
for that year, significant contributions to the overall mean were due to easterly wind
conditions.
These plots when applied to other locations can reveal some useful features about

different sources. For example, it may be that the highest concentrationsmeasured only
occur infrequently, and the weightedmean plot can help show this.
The code required tomake Figure 43 and 44 is shown below.
Users are encouraged to try out other plot options. However, one potentially useful

plot is to select a few specific years of user interest. For example, what if you just wanted
to compare two years e.g. 2000 and 2003? This is easy to do by sending a subset of data to
the function. Use here can bemade of the openairselectByDate function.

wind rose for just 2000 and 2003
polarFreq(selectByDate(mydata, year = c(2000, 2003)), cols = "jet", type = "year")

The polarFreq function can also be used to gain an idea about the wind directions
that contribute most to the overall mean concentrations. As already shown, use of the
option statistic = “weighted.mean” will show the percentage contribution by wind
direction and wind speed bin. However, often it is unnecessary to consider different
wind speed intervals. To make the plot more effective, a few options are set as shown
in Figure 45. First, the statistic = “weighted.mean” is chosen to ensure that the plot
shows concentrations weighted by their frequency of occurrence of wind direction. For
this plot, we aremostly interested in just the contribution by wind direction and not wind
speed. Setting the ws.int to be above themaximumwind speed in the data set ensures

96

14 The polarFreq function

polarFreq(mydata, type = "year")

0
5

10
15

20
25

30
35

40
45

50

W

S

N

E

1998

0
5

10
15

20
25

30
35

40
45

50

W

S

N

E

1999

0
5

10
15

20
25

30
35

40
45

50

W

S

N

E

2000

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

100

W

S

N

E

2001

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

100

W

S

N

E

2002

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70

W

S

N

E

2003

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

100

W

S

N

E

2004

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

100

W

S

N

E

2005

frequency

0

20

40

60

80

100

120

140

160

Figure 42:Use of polarFreq function to plot wind speed/directions by year. Each cell
gives the total number of hours the windwas from that wind speed/direction in
a particular year. The number of hours is coded as a colour scale shown to the
right. The scale itself is non-linear to help show the overall distribution. The
dashed circular grey lines show thewind speed scale.

that all data are shown in one interval. Rather than having a square-root transform applied
to the colour scale, we choose to have a linear scale by setting trans = FALSE. Finally, to
show a ‘disk’, the offset is set at 80. Increasing the value of the offset will narrow the disk.
While Figure 45 is useful — e.g. it clearly shows that concentrations of NOx at this siteare totally dominated by south-westerly winds, the use of pollutionRose for this type of

plot is more effective, as shown in section 12.

97

14 The polarFreq function

polarFreq(mydata, pollutant = "so2", type = "year", statistic = "mean",
min.bin = 2)

0
5

10
15

20
25

30
35

40
45

W

S

N

E

1998

0
5

10
15

20
25

30
35

40
45

W

S

N

E

1999

0
5

10
15

20
25

30
35

40
45

W

S

N

E

2000

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

100

W

S

N

E

2001

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

100

W

S

N

E

2002

0
5

10
15

20
25

30
35

40
45

50
55

60

W

S

N

E

2003

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

100

W

S

N

E

2004

mean

SO2

0

2

4

6

8

10

12

14

16

18

20

22

Figure 43:Use of polarFreq function to plot mean SO2 concentrations (ppb) by windspeed/directions and year.

98

14 The polarFreq function

weighted mean SO2 concentrations
polarFreq(mydata, pollutant = "so2", type = "year", statistic = "weighted.mean",

min.bin = 2)

0
5

10
15

20
25

30
35

40
45

50

W

S

N

E

1998

0
5

10
15

20
25

30
35

40
45

50

W

S

N

E

1999

0
5

10
15

20
25

30
35

40
45

50

W

S

N

E

2000

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

100

W

S

N

E

2001

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

100

W

S

N

E

2002

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70

W

S

N

E

2003

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

100

W

S

N

E

2004

contribution

(%)

SO2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 44:Use of polarFreq function to plot weightedmean SO2 concentrations (ppb) bywind speed/directions and year.

99

14 The polarFreq function

polarFreq(mydata, pollutant = "nox", ws.int = 30, statistic = "weighted.mean",
offset = 80, trans = FALSE, col = "heat")

W

S

N

E

contribution
(%)

NOx

0

1

2

3

4

5

6

7

8

Figure 45: The percentage contribution to overall mean concentrations of NOx atMaryle-bone Road.

100

15 The polarPlot and polarCluster functions

15 The polarPlot and polarCluster functions
15.1 Purpose

see also
polarFreq

polarAnnulus
percentileR-

ose
pollutionRose

The polarPlot function plots a bivariate polar plot of concentrations. Concentrations are
shown to vary bywind speed andwind direction. In may respects they are similar to the
plots shown in (§14) but include some additional enhancements. These enhancements
include: plots are shown as a continuous surface and surfaces are calculated through
modelling using smoothing techniques. These plots are not entirely new as others have
considered the joint wind speed-direction dependence of concentrations (see for example
Yu et al. (2004)). However, plotting the data in polar coordinates and for the purposes of
source identification is new. Recent publications that describe or use the technique are
(Carslaw et al., 2006;Westmoreland et al., 2007). These plots have proved to be useful for
quickly gaining a graphical impression of potential sources influences at a location.
For many, maybe most situations, increasing wind speed generally results in lower

concentrations due to increased dilution through advection and increased turbulence.
There are, however, many processes that can lead to interesting concentration-wind speed
dependencies and we will provide a more theoretical treatment of this in due course.
However, below are a few reasons why concentrations can changewith increasing wind
speeds.
• Buoyant plumes from tall stacks can be brought down to ground-level resulting in
high concentrations under high wind speed conditions.

• Particle suspension increases with increasing wind speeds e.g. PM10 from spoilheaps and the like.
• “Particle” suspension can be important close to coastal areas where higher wind
speeds generatemore sea spray.

• Thewind speed dependence of concentrations in a street canyon can be very com-
plex: higher wind speeds do not always results in lower concentrations due to re-
circulation. Bivariate polar plots are very good at revealing these complexities.

• As Carslaw et al. (2006) showed, aircraft emissions have an unusual wind speed
dependence and this can help distinguish them from other sources. If several meas-
urement sites are available, polar plots can be used to triangulate different sources.

• Concentrations of NO2 can increase with increasing wind speed— or at least not de-cline steeply due to increasedmixing. Thismixing can result inO3-rich air convertingNO toNO2.
The function has been developed to allow variables other than wind speed to be plotted

with wind direction in polar coordinates. The key issue is that the other variable plotted
against wind direction should be discriminating in someway. For example, temperature
can help reveal high-level sources brought down to ground level in unstable atmospheric
conditions, or show the effect a source emission dependent on temperature e.g. bio-
genic isoprene. For research applications wheremanymore variables could be available,
discriminating sources by these other variables could be very insightful.
Bivariate polar plots are constructed in the following way. First, wind speed, wind

direction and concentration data are partitioned into wind speed-direction bins and the
mean concentration calculated for each bin. Testing on a wide range of data suggests
that wind direction intervals at 10 degrees and 30wind speed intervals capture sufficient
detail of the concentration distribution. The wind direction data typically available are

101

15 The polarPlot and polarCluster functions

generally rounded to 10 degrees and for typical surfacemeasurements of wind speed in
the range 0 to 20 to 30m s−1, intervals greater than 30would be difficult to justify based
on a consideration of the accuracy of the instruments. Binning the data in this way is not
strictly necessary but acts as an effective data reduction technique without affecting the
fidelity of the plot itself. Furthermore, because of the inherent wind direction variability
in the atmosphere, data from several weeks, months or years typically used to construct
a bivariate polar plot tends to be diffuse and does not vary abruptly with either wind
direction or speed andmore finely resolved bin sizes or working with the raw data directly
does not yield more information.
The wind components, u and v are calculated i.e.

u = ū.sin

(
2π

θ

)
, v = ū.cos

(
2π

θ

)
(1)

with ū is themean hourly wind speed and θ is themeanwind direction in degrees with
90 degrees as being from the east.
The calculations above provides a u, v , concentration (C) surface. While it would be

possible to workwith this surface data directly a better approach is to apply amodel to
the surface to describe the concentration as a function of the wind components u and v to
extract real source features rather than noise. A flexible framework for fitting a surface is
to use aGeneralizedAdditiveModel (GAM) e.g. (Hastie andTibshirani, 1990;Wood, 2006).
GAMs are a useful modelling frameworkwith respect to air pollution prediction because
typically the relationships between variables are non-linear and variable interactions are
important, both of which issues can be addressed in a GAM framework. GAMs can be
expressed as shown in Equation 2:

√
Ci = β0 +

n∑
j=1

sj(xij) + εi (2)

where Ci is the ith pollutant concentration, β0 is the overall mean of the response, sj(xij)is the smooth function of ith value of covariate j , n is the total number of covariates, and εiis the ith residual. Note thatCi is square-root transformed as the transformation generallyproduces better model diagnostics e.g. normally distributed residuals.
Themodel chosen for theestimateof the concentration surface is givenbyEquation3. In

thismodel the square root-transformedconcentration is a smooth functionof thebivariate
wind components u and v . Note that the smooth function used is isotropic because u and v
are on the same scales. The isotropic smooth avoids the potential difficulty of smoothing
two variables on different scales e.g. wind speed and direction, which introduces further
complexities. √

Ci = s(u, v) + εi (3)

15.2 Options available
The polarPlot function has the following options:
mydata A data frameminimally containing wd, another variable to plot in polar co-

ordinates (the default is a column "ws"—wind speed) and a pollutant. Should
also contain date if plots by time period are required.

pollutant Mandatory. A pollutant name corresponding to a variable in a data frame
should be supplied e.g. pollutant = "nox". There can also be more than
one pollutant specified e.g. pollutant = c("nox", "no2"). Themain use

102

15 The polarPlot and polarCluster functions

of using two ormore pollutants is for model evaluationwhere two species
would be expected to have similar concentrations. This saves the user stack-
ing the data and it is possible to work with columns of data directly. A typ-
ical use would be pollutant = c("obs", "mod") to compare two columns
"obs" (the observations) and "mod" (modelled values).

x Name of variable to plot against wind direction in polar coordinates, the
default is wind speed, "ws".

wd Name of wind direction field.
type type determines how the data are split i.e. conditioned, and then plotted.

The default is will produce a single plot using the entire data. Type can be one
of the built-in types as detailed in cutData e.g. "season", "year", "weekday"
and so on. For example, type = "season"will produce four plots — one for
each season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable,
then those categories/levels will be used directly. This offers great flexibility
for understanding the variation of different variables and how they depend
on one another.
Type can be up length two e.g. type = c("season", "weekday")will pro-
duce a 2x2 plot split by season and day of theweek. Note, when two types
are provided the first forms the columns and the second the rows.

statistic The statistic that should be applied to each wind speed/direction bin. Can be
"mean" (default), "median", "max" (maximum), "frequency". "stdev" (stand-
ard deviation) or "weighted.mean". Because of the smoothing involved, the
colour scale for some of these statistics is only to provide an indication of
overall pattern and should not be interpreted in concentration units e.g. for
statistic = "weighted.mean"where the bin mean is multiplied by the bin
frequency and divided by the total frequency. Inmany cases using polarFreq
will bebetter. Settingstatistic = "weighted.mean" canbeuseful because
it provides an indication of the concentration * frequency of occurrence and
will highlight the wind speed/direction conditions that dominate the overall
mean.

resolution Two plot resolutions can be set: "normal" (the default) and "fine", for a
smoother plot. It should be noted that plots with a "fine" resolution can
take longer to render and the default option should be sufficient or most
circumstances.

limits The function does its best to choose sensible limits automatically. However,
there are circumstances when the user will wish to set different ones. An
example would be a series of plots showing each year of data separately. The
limits are set in the form c(lower, upper), so limits = c(0, 100)would
force the plot limits to span 0-100.

exclude.missing Setting this option to TRUE (the default) removes points from the plot
that are too far from the original data. The smoothing routines will produce
predictions at points where no data exist i.e. they predict. By removing the
points too far from the original data produces a plot where it is clear where
the original data lie. If set to FALSEmissing data will be interpolated.

103

15 The polarPlot and polarCluster functions

uncertainty Should the uncertainty in the calculated surface be shown? If TRUE three
plots are produced on the same scale showing the predicted surface together
with the estimated lower and upper uncertainties at the 95 the uncertainties
is useful to understand whether features are real or not. For example, at
high wind speeds where there are few data there is greater uncertainty over
the predicted values. The uncertainties are calculated using the GAMand
weighting is done by the frequency of measurements in each wind speed-
direction bin. Note that if uncertainties are calculated then the type is set to
"default".

cols Colours to be used for plotting. Options include "default", "increment", "heat",
"jet" and RColorBrewer colours — see the openair openColours function
for more details. For user defined the user can supply a list of colour names
recognised by R (type colours() to see the full list). An example would be
cols = c("yellow", "green", "blue")

min.bin Theminimum number of points allowed in a wind speed/wind direction bin.
The default is 1. A value of two requires at least 2 valid records in each bin an
so on; bins with less than 2 valid records are set to NA. Care should be taken
when using a value > 1 because of the risk of removing real data points. It is
recommended to consider your data with care. Also, the polarFreq function
can be of use in such circumstances.

upper This sets the upper limit wind speed to be used. Often there are only a
relatively few data points at very high wind speeds and plotting all of them
can reduce the useful information in the plot.

angle.scale Thewind speed scale is by default shown at a 315 degree angle. Sometimes
the placement of the scale may interfere with an interesting feature. The
user can therefore set angle.scale to another value (between 0 and 360
degrees) to mitigate such problems. For example angle.scale = 45 will
draw the scale heading in a NE direction.

units The units shown on the polar axis scale.
force.positive The default is TRUE. Sometimes if smoothing data with steep gradients

it is possible for predicted values to be negative. force.positive = TRUE
ensures that predictions remain positive. This is useful for several reasons.
First, with lots of missing data more interpolation is needed and this can
result in artifacts because the predictions are too far from the original data.
Second, if it is known beforehand that the data are all positive, then this op-
tion carries that assumption through to the prediction. The only likely time
where setting force.positive = FALSEwould be if background concentra-
tions were first subtracted resulting in data that is legitimately negative. For
the vast majority of situations it is expected that the user will not need to
alter the default option.

k This is the smoothing parameter used by the gam function in package mgcv.
Typically, value of around 100 (the default) seems to be suitable and will
resolve important features in the plot. Themost appropriate choice of k is
problem-dependent; but extensive testing of polar plots for many different
problems suggests a value of k of about 100 is suitable. Setting k to higher
values will not tend to affect the surface predictions bymuch but will add to
the computation time. Lower values of kwill increase smoothing. Sometimes

104

15 The polarPlot and polarCluster functions

with few data to plot polarPlotwill fail. Under these circumstances it can
beworth lowering the value of k.

normalise If TRUE concentrations are normalised by dividing by their mean value. This
is done after fitting the smooth surface. This option is particularly useful if
one is interested in the patterns of concentrations for several pollutants on
different scales e.g. NOx and CO. Often useful if more than one pollutant
is chosen.

key.header Adds additional text/labels to the scale key. For example, passing the options
key.header = "header", key.footer = "footer1"adds addition text above
and below the scale key. These arguments are passed to drawOpenKey via
quickText, applying the auto.text argument, to handle formatting.

key.footer see key.footer.
key.position Location where the scale key is to plotted. Allowed arguments currently

include "top", "right", "bottom" and "left".
key Fine control of the scale key via drawOpenKey. See drawOpenKey for further

details.
auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically

try and format pollutant names and units properly e.g. by subscripting the ‘2’
in NO2.

... Other graphical parameters passed onto lattice:levelplot and cutData.
For example, polarPlot passes the option hemisphere = "southern" on
to cutData to provide southern (rather than default northern) hemisphere
handling of type = "season". Similarly, common axis and title labelling op-
tions (such as xlab, ylab, main) are passed to levelplot via quickText to
handle routine formatting.

15.3 Example of use
We first use the function in its simplest form tomake a polar plot of NOx . The code is verysimple as shown in Figure 46.
This produces Figure 46. The scale is automatically set using whatever units the original

data are in. This plot clearly shows highest NOx concentrations when the wind is fromthe south-west. Given that themonitor is on the south side of the street and the highest
concentrations are recordedwhen thewind is blowing away from themonitor is strong
evidence of street canyon recirculation.
Figure 47 and Figure 48 shows polar plots using different defaults and for other pollut-

ants. In the first (Figure 47, a different colour scheme is used and some adjustments are
made to the key. In Figure 48, SO2 concentrations are shown. What is interesting aboutthis plot comparedwith either Figure 47 or Figure 46 is that the concentration pattern
is very different i.e. high concentrations with highwind speeds from the east. Themost
likely source of this SO2 are industrial sources to the east of London. The plot does stillhowever show evidence of a source to the south-west, similar to the plot for NOx , whichimplies that road traffic sources of SO2 can also be detected.These plots often show interesting features at higher wind speeds. For these conditions
there can be very fewmeasurements and therefore greater uncertainty in the calculation
of the surface. There are several ways in which this issue can be tackled. First, it is possible
to avoid smoothing altogether and use polarFreq. The problemwith this approach is that

105

15 The polarPlot and polarCluster functions

polarPlot(mydata, pollutant = "nox")

0

5

10 wind spd.

15

20

25

W

S

N

E

mean

NOx

50

100

150

200

250

Figure 46:Default use of the polarPlot function applied toMarylebone RoadNOx con-centrations.

it is difficult to know how best to bin wind speed and direction: the choice of interval
tends to be arbitrary. Second, the effect of setting aminimum number of measurements
in each wind speed-direction bin can be examined through min.bin. It is possible that
a single point at high wind speed conditions can strongly affect the surface prediction.
Therefore, setting min.bin = 3, for example, will remove all wind speed-direction bins
with fewer than 3 measurements before fitting the surface. This is a useful strategy for
testing how sensitive the plotted surface is to the number of measurements available.
While this is a useful strategy to get a feel for how the surface changes with different
min.bin settings, it is still difficult to know howmany points should be used as a minimum.
Third, consider setting uncertainty = TRUE. This option will show the predicted surface
together with upper and lower 95% confidence intervals, which take account of the fre-
quency of measurements. The uncertainty approach ought to be the most robust and
removes any arbitrary setting of other options. There is a close relationship between the
amount of smoothing an the uncertainty: more smoothing will tend to reveal less detail
and lower uncertainties in the fitted surface and vice-versa.polarFreq

provides an
un-smoothed

surface

A very useful approach for understanding air pollution is to consider ratios of pollutants.
One reason is that pollutant ratios can be largely independent of meteorological variation.
In many circumstances it is possible to gain a lot of insight into sources if pollutant ratios
are considered. First, it is necessary to calculate a ratio, which is easy in R. In this example
we consider the ratio of SO2/NOx :

mydata$ratio <- mydata$so2/mydata$nox

Working with
ratios of

pollutants
This makes a new variable called ratio. Sometimes it can be problematic if there are

values equal to zero on the denominator, as is the case here. The mean and maximum
value of the ratio is infinite, as shown by the Inf in the statistics below. Luckily, R can
deal with infinity and the openair functions will remove these values before performaing
calculations. It is very simple therefore to calculate ratios.

summary(mydata$ratio)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0 0 0 Inf 0 Inf 10034

106

15 The polarPlot and polarCluster functions

NOx plot
polarPlot(mydata, pollutant = "nox", col = "jet", key.position = "bottom",

key.header = "mean nox (ug/m3)", key.footer = NULL)

0

5

10 wind spd.

15

20

25

W

S

N

E

50 100 150 200 250

mean NOx (µg m−3)

Figure 47: Example plots using thepolarPlot functionwith different options for themean
concentration of NOx .

polarPlot(mydata, pollutant = "so2")

0

5

10 wind spd.

15

20

25

W

S

N

E

mean

SO2

1

2

3

4

5

6

7

8

Figure 48: Example plots using the polarPlot function for the mean concentration of
SO2.

107

15 The polarPlot and polarCluster functions

polarPlot(mydata, pollutant = "ratio", main = "so2/nox ratio")

SO2/NOx ratio

0

5

10 wind spd.

15

20

25

W

S

N

E

mean

ratio

0.01

0.02

0.03

0.04

0.05

Figure 49:Bivariate polar plot of the ratio of SO2/NOx .

A polar plot of the SO2/NOx ratio is shown in Figure 49. The plot highlights some newfeatures not seen before. First, to the north there seems to be evidence that the air tends
to have a higher SO2/NOx ratio. Also, the source to the east has a higher SO2/NOx ratiocompared with that when the wind is from the south-west i.e. dominated by road sources.
It seems therefore that the easterly source(s), which are believed to be industrial sources
have a different SO2/NOx ratio compared with road sources. This is a very simple analysis,but ratios can be used effectively in many functions and are particularly useful in the
presence of high source complexity.
Sometimes when considering ratios it might be necessary to limit the values in some

way; perhaps due to some unusually low value denominator data resulting in a few very
high values for the ratio. This is easy to do with the subset command. The code below
selects ratios less than 0.1.

polarPlot(subset(mydata, ratio < 0.1), pollutant = "ratio")

The uncertainties in the surface can be calculated by setting the option uncertainty
= TRUE. The details are described above and here we show the example of SO2 concen-trations (Figure 50). In general the uncertainties are higher at high wind speeds i.e. at
the “fringes” of a plot where there are fewer data. However, themagnitude depends on
both the frequency and magnitude of the concentration close to the points of interest.
The pattern of uncertainty is not always obvious and it can differ markedly for different
pollutants.
The polarPlot function can also produce plots dependent on another variable (see the

type option). For example, the variation of SO2 concentrations atMarylebone Road byhour of the day in Figure 51. This plot shows that concentrations of SO2 tend to be highestfrom the east (as also shown in Figure 48) and for hours in themorning. Together these
plots can help better understand different source types. For example, does a source only
seem to be present during weekdays, or winter months etc. In the case of Figure 51, the
more obvious presence during themorning hours could be due tometeorological factors
and this possibility should be investigated also. In other settings where there are many
sources that vary in their source emission and temporal characteristics, the polarPlot
function should prove to be very useful.
One issue to be aware of is the amount of data required to generate some of these plots;

108

15 The polarPlot and polarCluster functions

polarPlot(mydata, pollutant = "so2", uncertainty = TRUE)

0

5

10 wind spd.

15

20

25

W

S

N

E

lower uncertainty

0

5

10 wind spd.

15

20

25

W

S

N

E

prediction

0

5

10 wind spd.

15

20

25

W

S

N

E

upper uncertainty mean

SO2

0

2

4

6

8

10

Figure 50: Bivariate polar plot of SO2 concentrations atMarylebone Road. Three surfacesare shown: the central prediction (middle) and the lower and upper 95% estim-
ated uncertainties. These plots help to show that in this particular case, some
of the concentrations for strong easterly and south-easterly winds are rather
uncertain. However, the central feature to the east remains, suggesting this
feature is “real” and not an artifact of there being too few data.

particularly the hourly plots. If only a relatively short time series is available there may
not be sufficient information to produce useful plots. Whether this is important or not will
depend on the specific circumstances e.g. the prevalence of wind speeds and directions
from the direction of interest. When used to producemany plots (e.g. type = “hour”), the
run time can be quite long.
The function was called as shown in Figure 51 (note that in this case the minimum

number of points in each wind speed/direction was set to 2).

109

15 The polarPlot and polarCluster functions

polarPlot(mydata, pollutant = "so2", type = "hour", min.bin = 2)

0
5

10 wind spd.
15

20
25

W

S

N

E

00

0
5

10 wind spd.
15

20
25

W

S

N

E

01

0
5

10 wind spd.
15

20
25

W

S

N

E

02

0
5

10 wind spd.
15

20
25

W

S

N

E

03

0
5

10 wind spd.
15

20
25

W

S

N

E

04

0
5

10 wind spd.
15

20
25

W

S

N

E

05

0
5

10 wind spd.
15

20
25

W

S

N

E

06

0
5

10 wind spd.
15

20
25

W

S

N

E

07

0
5

10 wind spd.
15

20
25

W

S

N

E

08

0
5

10 wind spd.
15

20
25

W

S

N

E

09

0
5

10 wind spd.
15

20
25

W

S

N

E

10

0
5

10 wind spd.
15

20
25

W

S

N

E

11

0
5

10 wind spd.
15

20
25

W

S

N

E

12

0
5

10 wind spd.
15

20
25

W

S

N

E

13

0
5

10 wind spd.
15

20
25

W

S

N

E

14

0
5

10 wind spd.
15

20
25

W

S

N

E

15

0
5

10 wind spd.
15

20
25

W

S

N

E

16

0
5

10 wind spd.
15

20
25

W

S

N

E

17

0
5

10 wind spd.
15

20
25

W

S

N

E

18

0
5

10 wind spd.
15

20
25

W

S

N

E

19

0
5

10 wind spd.
15

20
25

W

S

N

E

20

0
5

10 wind spd.
15

20
25

W

S

N

E

21

0
5

10 wind spd.
15

20
25

W

S

N

E

22

0
5

10 wind spd.
15

20
25

W

S

N

E

23

mean

SO2

2

4

6

8

10

12

Figure 51:Use of the polarPlot function applied to SO2 concentrations atMaryleboneRoad. In this case the plots are shown by hour of the day.

110

15 The polarPlot and polarCluster functions

The polarCluster function for feature identification and extraction
The polarPlot function will often identify interesting features that would be useful to
analyse further. It is possible to select areas of interest based only on a consideration of
a plot. Such a selection could be based on wind direction and wind speed intervals for
example e.g.

subdata <- subset(mydata, ws > 3 & wd >= 180 & wd <= 270)

which would select wind speeds>3 /ms andwind directions from 180 to 270 degrees
from mydata. That subset of data, subdata, could then be analysed using other functions.
While this approachmay be useful in many circumstances it is rather arbitrary. In fact, the
choice of “interesting feature” in the first place can even depend on the colour scale used,
which is not very robust. Furthermore, many interesting patterns can be difficult to select
andwon’t always fall into convenient intervals of other variables such as wind speed and
direction.
A better approach is to use a method that can select group similar features together.

One such approach is to use cluster analysis. openair uses k-means clustering as a way in
which bivariate polar plot features can be identified and grouped. Themain purpose of
grouping data in this way is to identify records in the original time series data by cluster
to enable post-processing to better understand potential source characteristics. The
process of grouping data in k-means clustering proceeds as follows. First, k points are
randomly chosen form the space represented by the objects that are being clustered into
k groups. These points represent initial group centroids. Each object is assigned to the
group that has the closest centroid. When all objects have been assigned, the positions of
the k centroids is re-calculated. The previous two steps are repeated until the centroids
no longer move. This produces a separation of the objects into groups from which the
metric to beminimised can be calculated.
Central to the idea of clustering data is the concept of distance i.e. somemeasure of sim-

ilarity or dissimilarity between points. Clusters should be comprised of points separated
by small distances relative to the distance between the clusters. Careful consideration
is required to define the distancemeasure used because the effectiveness of clustering
itself fundamentally depends on its choice. The similarity of concentrations shown in
Figure 46 for example is determined by three variables: the u and v wind components
and the concentration. All three variables are equally important in characterising the
concentration-location information, but they exist on different scales i.e. a wind speed-
directionmeasure and a concentration. The basic k-means algorithm is:

k∑
j=1

n∑
i=1

||x (j)i − cj ||2 (4)

where ||x (j)i −cj ||2 is a chosen distancemeasure between a data point x (j)i and the cluster
centre cj , is an indicator of the distance of the n data points from their respective clustercentres.
The distancemeasure is defined as the Euclidean distance:

dx ,y =

√√√√ J∑
j=1

(xj − yj)2 (5)

Where x and y are two J-dimensional vectors, which have been standardized by sub-
tracting the mean and dividing by the standard deviation. In the current case J is of

111

15 The polarPlot and polarCluster functions

length three i.e. the wind components u and v and the concentration C , each of which is
standardized e.g.:

xj =

(
xj − x̄

σx

)
(6)

Standardization is necessary because the wind components u and v are on different
scales to the concentration. In principle, more weight could be given to the concentration
rather than the u and v components, although this would tend to identify clusters with
similar concentrations but different source origins.
polarCluster can be thought of as the “local” version of clustering of back trajectories.

Rather than using air mass origins, wind speed, wind direction and concentration are used
to group similar conditions together. subsection 26.1 provides the details of clustering
back trajectories in openair.
The polarCluster function has the following options.

mydata A data frameminimally containing wd, another variable to plot in polar co-
ordinates (the default is a column "ws"—wind speed) and a pollutant. Should
also contain date if plots by time period are required.

pollutant Mandatory. A pollutant name corresponding to a variable in a data frame
should be supplied e.g. pollutant = "nox". Only one pollutant can be
chosen.

x Name of variable to plot against wind direction in polar coordinates, the
default is wind speed, "ws".

wd Name of wind direction field.
n.clusters Number of clusters to use. If n.clusters is more than length 1, then a

lattice panel plot will be output showing the clusters identified for each
one of n.clusters.

cols Colours to be used for plotting. Useful options for categorical data are avil-
able from RColorBrewer colours — see the openair openColours function
for more details. Useful schemes include "Accent", "Dark2", "Paired", "Pas-
tel1", "Pastel2", "Set1", "Set2", "Set3" — but see ?brewer.pal for the max-
imum useful colours in each. For user defined the user can supply a list
of colour names recognised by R (type colours() to see the full list). An
example would be cols = c("yellow", "green", "blue").

angle.scale Thewind speed scale is by default shown at a 315 degree angle. Sometimes
the placement of the scale may interfere with an interesting feature. The
user can therefore set angle.scale to another value (between 0 and 360
degrees) to mitigate such problems. For example angle.scale = 45 will
draw the scale heading in a NE direction.

units The units shown on the polar axis scale.
auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically

try and format pollutant names and units properly e.g. by subscripting the ‘2’
in NO2.

... Other graphical parameters passed onto polarPlot, lattice:levelplot
and cutData. Common axis and title labelling options (such as xlab, ylab,
main) are passed via quickText to handle routine formatting.

112

15 The polarPlot and polarCluster functions

polarCluster(mydata, pollutant = "so2", n.clusters = 2:10, cols = "Set3")

0

5

10 wind spd.
15

20

25

W

S

N

E

2 clusters

0

5

10 wind spd.
15

20

25

W

S

N

E

3 clusters

0

5

10 wind spd.
15

20

25

W

S

N

E

4 clusters

0

5

10 wind spd.
15

20

25

W

S

N

E

5 clusters

0

5

10 wind spd.
15

20

25

W

S

N

E

6 clusters

0

5

10 wind spd.
15

20

25

W

S

N

E

7 clusters

0

5

10 wind spd.
15

20

25

W

S

N

E

8 clusters

0

5

10 wind spd.
15

20

25

W

S

N

E

9 clusters

0

5

10 wind spd.
15

20

25

W

S

N

E

10 clusters

cluster
1
2
3
4
5
6
7
8
9
10

Figure 52:Use of the polarCluster function applied to SO2 concentrations at Maryle-bone Road. In this case 2 to 10 clusters have been chosen.

The use of the polarCluster is very similar to the use of all openair functions. While
there are many techniques available to try and find the optimum number of clusters, it
is difficult for these approaches to work in a consistent way for identifying features in
bivariate polar plots. For this reason it is best to consider a range of solutions that covers
a number of clusters.
Cluster analysis is computationally intensive and the polarCluster function can take a

comparatively long time to run. The basic idea is to calculate the solution to several cluster
levels and then choose one that offers themost appropriate solution for post-processing.
The example given below is for concentrations of SO2, shown in Figure 48 and the aim isto identify features in that plot. A range of numbers of clusters will be calculated— in the

is case from two to ten.
The real benefit of polarCluster is being able to identify clusters in the original data

frame. To do this, the results from the analysis must be read into a new variable, as in
Figure 53, where the results are read into a data frame results. Now it is possible to use
this new information. In the 8-cluster solution to Figure 53, cluster 6 seems to capture
the elevated SO2 concentrations to the east well (see Figure 48 for comparison), while

113

15 The polarPlot and polarCluster functions

results <- polarCluster(mydata, pollutant = "so2", n.clusters = 8, cols = "Set3")

0

5

10 wind spd.

15

20

25

W

S

N

E

cluster
1
2
3
4
5
6
7
8

Figure 53:Use of the polarCluster function applied to SO2 concentrations at Maryle-bone Road. In this case 8 clusters have been chosen.

cluster 5 will strongly represent the road contribution.
The results are here:
head(results$data)

date ws wd nox no2 o3 pm10 so2 co pm25
1 1998-01-01 00:00:00 0.60 280 285 39 1 pm10 22 to 31 4.723 3.373 NA
2 1998-01-01 02:00:00 2.76 190 NA NA 3 pm10 31 to 44 6.830 9.602 NA
3 1998-01-01 03:00:00 2.16 170 493 52 3 pm10 31 to 44 7.662 10.217 NA
4 1998-01-01 04:00:00 2.40 180 468 78 2 pm10 31 to 44 8.070 8.912 NA
5 1998-01-01 05:00:00 3.00 190 264 42 0 pm10 -1 to 22 5.505 3.053 NA
6 1998-01-01 06:00:00 3.00 140 171 38 0 pm10 -1 to 22 4.230 2.265 NA
season ratio cluster
1 winter (DJF) 0.01657 5
2 winter (DJF) NA 5
3 winter (DJF) 0.01554 4
4 winter (DJF) 0.01724 4
5 winter (DJF) 0.02085 5
6 winter (DJF) 0.02474 4

Note that there is an additional column cluster that gives the cluster a particular row
belongs to and that this is a character variable. It might be easier to read these results into
a new data frame:

results <- results$data

It is easy to find out howmany points are in each cluster:
table(results$cluster)

##
1 2 3 4 5 6 7 8
194 484 156 15994 24782 2370 7677 3066

Now other openair analysis functions can be used to analyse the results. For example,
to consider the temporal variations by cluster:

114

16 The polarAnnulus function

timeVariation(results, pollutant = "so2", group = "cluster", col = "Set3",
ci = FALSE, lwd = 3)

Or if we just want to plot a couple of clusters (5 and 6) using the same colours as in
Figure 53:

timeVariation(subset(results, cluster %in% c("5", "6")), pollutant = "so2",
group = "cluster", col = openColours("Set3", 8)[5:6], lwd = 3)

polarClusterwill work on any surface that can be plotted by polarPlot e.g. the radial
variable does not have to bewind speedbut could be another variable such as temperature.
While it is not always possible for polarCluster to identify all features in a surface it
certainly makes it easier to post-process polarPlots using other openair functions or
indeed other analyses altogether.

16 The polarAnnulus function
16.1 Purpose

see also
polarFreq

polarPlot per-
centileRose

pollutionRose

The polarAnnulus function provides a way in which to consider the temporal aspects of a
pollutant concentration bywind direction. This is anothermeans of visualising diurnal, day
of week, seasonal and trend variations. Plotting as an annulus, rather than a circle avoids
to some extent the difficulty in interpreting values close to the origin. These plots have
the capacity to display potentially important information regarding sources; particularly if
more than one pollutant is available.

16.2 Options available
The polarAnnulus function has the following options:
mydata A data frameminimally containing date, wd and a pollutant.
pollutant Mandatory. A pollutant name corresponding to a variable in a data frame

should be supplied e.g. pollutant = "nox". There can also be more than
one pollutant specified e.g. pollutant = c("nox", "no2"). Themain use
of using two ormore pollutants is for model evaluationwhere two species
would be expected to have similar concentrations. This saves the user stack-
ing the data and it is possible to work with columns of data directly. A typ-
ical use would be pollutant = c("obs", "mod") to compare two columns
"obs" (the observations) and "mod" (modelled values).

resolution Two plot resolutions can be set: "normal" and "fine" (the default).
local.time Should the results be calculated in local time? The default is TRUE. Emissions

activity tends to occur at local time e.g. rush hour is at 8 am every day.
When the clocks go forward in spring, the emissions are effectively released
into the atmosphere at BST - 1 hour during the summer. When plotting
diurnal profiles, this has the effect of "smearing-out" the concentrations. A
better approach is to express time as local time, which here is defined as
BST (British Summer Time). This correction tends to produce better-defined
diurnal profiles of concentration (or other variables) and allows a better
comparison to be made with emissions/activity data. If set to FALSE then
GMT is used.

115

16 The polarAnnulus function

period This determines the temporal period to consider. Options are "hour" (the
default, to plot diurnal variations), "season" to plot variation throughout the
year, "weekday" to plot day of the week variation and "trend" to plot the
trend bywind direction.

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can be one
of the built-in types as detailed in cutData e.g. "season", "year", "weekday"
and so on. For example, type = "season"will produce four plots — one for
each season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable,
then those categories/levels will be used directly. This offers great flexibility
for understanding the variation of different variables and how they depend
on one another.
Type can be up length two e.g. type = c("season", "site")will produce
a 2x2 plot split by season and site. The use of two types is mostly meant for
situations where there are several sites. Note, when two types are provided
the first forms the columns and the second the rows.
Also note that for the polarAnnulus function some type/period combina-
tions are forbidden or make little sense. For example, type = "season" and
period = "trend" (which would result in a plot with toomany gaps in it for
sensible smoothing), or type = "weekday" and period = "weekday".

limits Limits for colour scale.
cols Colours to be used for plotting. Options include "default", "increment", "heat",

"jet" and user defined. For user defined the user can supply a list of colour
names recognised by R (type colours() to see the full list). An example
would be cols = c("yellow", "green", "blue")

width Thewidth of the annulus; can be "normal" (the default), "thin" or "fat".
min.bin Theminimum number of points allowed in a wind speed/wind direction bin.

The default is 1. A value of two requires at least 2 valid records in each bin an
so on; bins with less than 2 valid records are set to NA. Care should be taken
when using a value > 1 because of the risk of removing real data points. It is
recommended to consider your data with care. Also, the polarFreq function
can be of use in such circumstances.

exclude.missing Setting this option to TRUE (the default) removes points from the plot
that are too far from the original data. The smoothing routines will produce
predictions at points where no data exist i.e. they predict. By removing the
points too far from the original data produces a plot where it is clear where
the original data lie. If set to FALSEmissing data will be interpolated.

date.pad For type = "trend" (default), date.pad = TRUEwill pad-out missing data
to the beginning of the first year and the end of the last year. The purpose is
to ensure that the trend plot begins and ends at the beginning or end of year.

force.positive The default is TRUE. Sometimes if smoothing data with steep gradients it
is possible for predicted values to be negative. force.positive = TRUE en-
sures that predictions remain postive. This is useful for several reasons. First,

116

16 The polarAnnulus function

with lots of missing datamore interpolation is needed and this can result in
artifacts because the predictions are too far from the original data. Second,
if it is known beforehand that the data are all postive, then this option carries
that assumption through to the prediction. The only likely timewhere set-
ting force.positive = FALSEwould be if background concentrations were
first subtracted resulting in data that is legitimately negative. For the vast
majority of situations it is expected that the user will not need to alter the
default option.

k The smoothing value supplied to gam for the temporal and wind direction
components, respectively. In some cases e.g. a trend plot with less than
1-year of data the smoothing with the default values may become too noisy
and affectedmore by outliers. Choosing a lower value of k (say 10) may help
produce a better plot.

normalise If TRUE concentrations are normalised by dividing by their mean value. This
is done after fitting the smooth surface. This option is particularly useful if
one is interested in the patterns of concentrations for several pollutants on
different scales e.g. NOx and CO. Often useful if more than one pollutant
is chosen.

key.header Adds additional text/labels to the scale key. For example, passing the options
key.header = "header", key.footer = "footer1"adds addition text above
and below the scale key. These arguments are passed to drawOpenKey via
quickText, applying the auto.text argument, to handle formatting.

key.footer see key.header.
key.position Location where the scale key is to plotted. Allowed arguments currently

include "top", "right", "bottom" and "left".
key Fine control of the scale key via drawOpenKey. See drawOpenKey for further

details.
auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically

try and format pollutant names and units properly e.g. by subscripting the ‘2’
in NO2.

... Other graphical parameters passed onto lattice:levelplot and cutData.
For example, polarAnnulus passes the option hemisphere = "southern"
on tocutData toprovide southern (rather thandefault northern) hemisphere
handling of type = "season". Similarly, common axis and title labelling op-
tions (such as xlab, ylab, main) are passed to levelplot via quickText to
handle routine formatting.

16.3 Example of use
We apply the four variations of the polarAnnulus plot to PM10 concentrations atMaryle-bone Road. Figure 54 shows the different temporal components. Similar to other analyses
for PM10, the trend plot show that concentrations are dominated by southerly winds andthere is little overall change in concentrations from 1998 to 2005, as shown by the red
colouring over the period. The seasonal plot shows that February/March is important for
easterly winds, while the summer/late summer period is more important for southerly
and south-westerly winds. The day of theweek plot clearly shows concentrations to be

117

16 The polarAnnulus function

elevated for during weekdays but not weekends – for all wind directions. Finally, the
diurnal plot highlights that higher concentrations are observed from 6 am to 6 pm.
Interestingly, the plot for NOx and CO (not shown, but easily produced) did not showsuch a strong contribution for south-easterly winds. This raises the question as towhether

the higher particle concentrations seen for these wind directions are dominated by dif-
ferent sources (i.e. not the road itself). One explanation is that during easterly flow,
concentrations are strongly affected by long-range transport. However, as shown in the
diurnal plot in Figure 54, the contribution from the south-east also has a sharply defined
profile – showing very low concentrations at night, similar to the likely contribution from
the road. This type of profile might not be expected from a long-range source where
emissions are well-mixed and secondary particle formation has had time to occur. The
same is also true for the day of the week plot, where there is little evidence of “smeared-
out” long-range transport sources. These findings may suggest a different, local source
of PM10 that is not the road itself. Clearly, a more detailed analysis would be required toconfirm the patterns shown; but it does highlight the benefit of being able to analyse data
in different ways.
Where there is interest in considering thewind direction dependence of concentrations,

it can beworth filtering for wind speeds. At lowwind speedwith wind direction becomes
highly variable (and is often associated with high pollutant concentrations). Therefore, for
some situations it might be worth considering removing the very lowwind speeds. The
code below provides twoways of doing this using the subset function. The first selects
data where thewind speed is> 2m s−1. The second part shows how to select wind speeds
greater than the 10th percentile, using the quantile function. The latter way of selecting
is quite useful, because it is known how much data are selected i.e. in this case 90 %.
It is worth experimenting with different values because it is also important not to lose
information by ignoring wind speeds that provide useful information.

wind speed >2
polarAnnulus(subset(mydata, ws > 2), poll = "pm10", type = "hour")
wind speed > 10th percentile
polarAnnulus(subset(mydata, ws > quantile(ws, probs = 0.1, na.rm = TRUE)),

poll = "pm10", type = "hour")

118

17 The timePlot function

data(mydata)
polarAnnulus(mydata, poll = "pm10", period = "trend", main = "Trend")
polarAnnulus(mydata, poll = "pm10", period = "season", main = "Season")
polarAnnulus(mydata, poll = "pm10", period = "weekday", main = "Weekday")
polarAnnulus(mydata, poll = "pm10", period = "hour", main = "Hour")

Trend

01−Jan−1998

23−Jun−2005

01−Jan−1998

23−Jun−2005

W

S

N

E

PM10

20

25

30

35

40

45

50

Season

January

December

January

December

W

S

N

E

PM10

15

20

25

30

35

40

45

50

Weekday

Sunday

Saturday

Sunday

Saturday

W

S

N

E

PM10

20

25

30

35

40

45

50

55

60

Hour

0

23

0

23

W

S

N

E

PM10

20

25

30

35

40

45

50

55

Figure 54: Examples of the polarAnnulus function applied toMarylebone Road

17 The timePlot function
17.1 Purpose

see also
smoothTrend

TheilSen
timeVariation
scatterPlot

The timePlot function is designed to quickly plot time series of data, perhaps for several
pollutants or variables. This is, or should be, a very common task in the analysis of air
pollution. In doing so, it is helpful to be able to plot several pollutants at the same time
(andmaybe other variables) and quickly choose the time periods of interest. It will plot
time series of type Date and hourly and high time resolution data.
The function offers fine control over many of the plot settings such as line type, colour

and width. If more than one pollutant is selected, then the time series are shown in
a compact way in different panels with different scales. Sometimes it is useful to get
and idea of whether different variables ‘go up and down’ together. Such comparisons in
timePlot aremade easy by setting group = TRUE, andmaybe also normalise = “mean”.
The latter setting divides each variable by its mean value, thus enabling several variables

119

17 The timePlot function

to be plotted together using the same scale. The normalise option will also take a date as a
string (in British format dd/mm/YYYY), in which case all data are normalise to equal 100
at that time. Normalising data like this makes it easy to compare time series on different
scales e.g. emissions and ambient measurements.
timePlotworks very well in conjunction with selectByDate, which makes it easy to

select specific time series intervals. See (§31.1) for examples of how to select parts of a
data frame based on the date.
Another useful feature of timePlot is the ability to average the data in several ways.

This makes it easy, for example, to plot daily or monthly means from hourly data, or hourly
means from 15-minute data. See the option avg.time for more details and (§31.4) where
a full description of time averaging of data frames is given.

17.2 Options available
mydata Adata frameof time series. Must include adatefield andat least one variable

to plot.
pollutant Name of variable to plot. Two or more pollutants can be plotted, in which

case a form like pollutant = c("nox", "co") should be used.
group If more than one pollutant is chosen, should they all be plotted on the same

graph together? The default is FALSE, whichmeans they are plotted in separ-
ate panels with their own scaled. If TRUE then they are plotted on the same
plot with the same scale.

stack If TRUE the time series will be stacked by year. This option can be useful if
there are several years worth of datamaking it difficult to seemuch detail
when plotted on a single plot.

normalise Should variables be normalised? The default is is not to normalise the data.
normalise can take two values, either "mean" or a string representing a date
in UK format e.g. "1/1/1998" (in the format dd/mm/YYYY). If normalise
= "mean" then each time series is divided by its mean value. If a date is
chosen, then values at that date are set to 100 and the rest of the data scaled
accordingly. Choosing a date (say at the beginning of a time series) is very
useful for showing how trends diverge over time. Setting group = TRUE is
often useful too to show all time series together in one panel.

avg.time This defines the time period to average to. Can be "sec", "min", "hour", "day",
"DSTday", "week", "month", "quarter" or "year". Formuch increased flexibil-
ity a number can precede these options followed by a space. For example,
a timeAverage of 2 months would be period = "2 month". See function
timeAverage for further details on this.

data.thresh The data capture threshold to use (%) when aggregating the data using
avg.time. A value of zero means that all available data will be used in a
particular period regardless if of the number of values available. Conversely,
a value of 100will mean that all data will need to be present for the average
to be calculated, else it is recorded as NA. Not used if avg.time = "default".

statistic The statistic to apply when aggregating the data; default is themean. Can be
one of "mean", "max", "min", "median", "frequency", "sd", "percentile". Note
that "sd" is the standard deviation and "frequency" is the number (frequency)
of valid records in the period. "percentile" is the percentile level (%) between

120

17 The timePlot function

0-100, which can be set using the "percentile" option - see below. Not used if
avg.time = "default".

percentile The percentile level in % usedwhen statistic = "percentile" andwhen
aggregating the data with avg.time. More than one percentile level is al-
lowed for type = "default" e.g. percentile = c(50, 95). Not used if
avg.time = "default".

date.pad Shouldmissing data be padded-out? This is useful where a data frame con-
sists of two or more "chunks" of data with time gaps between them. By
setting date.pad = TRUE the time gaps between the chunks are shownprop-
erly, rather than with a line connecting each chunk. For irregular data, set to
FALSE. Note, this should not be set for type other than default.

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can be one
of the built-in types as detailed in cutData e.g. "season", "year", "weekday"
and so on. For example, type = "season"will produce four plots — one for
each season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable,
then those categories/levels will be used directly. This offers great flexibility
for understanding the variation of different variables and how they depend
on one another.
Only one type is currently allowed in timePlot.

cols Colours to be used for plotting. Options include "default", "increment", "heat",
"jet" and RColorBrewer colours — see the openair openColours function
for more details. For user defined the user can supply a list of colour names
recognised by R (type colours() to see the full list). An example would be
cols = c("yellow", "green", "blue")

plot.type Thelatticeplot type,which is a line (plot.type = "l") by default. Another
useful option is plot.type = "h", which draws vertical lines.

key Should a key be drawn? The default is TRUE.
log Should the y-axis appear on a log scale? The default is FALSE. If TRUE awell-

formatted log10 scale is used. This can be useful for plotting data for several
different pollutants that exist on very different scales. It is therefore useful
to use log = TRUE together with group = TRUE.

smooth Should a smooth line be applied to the data? The default is FALSE.
ci If a smoothfit line is applied, thencidetermineswhether the95%confidence

intervals aer shown.
y.relation This determines how the y-axis scale is plotted. "same" ensures all panels use

the same scale and "free" will use panel-specfic scales. The latter is a useful
setting when plotting data with very different values.

ref.x Add a vertical dashed reference line at this value.
ref.y Add a horizontal dashed reference line at this value.

121

17 The timePlot function

key.columns Number of columns to be used in the key. With many pollutants a single
column canmake to key toowide. The user can thus choose to use several
columns by setting columns to be less than the number of pollutants.

name.pol This option can be used to give alternative names for the variables plotted.
Instead of taking the column headings as names, the user can supply replace-
ments. For example, if a column had the name "nox" and the user wanted a
different description, then setting pol.name = "nox before change" can
be used. If more than one pollutant is plotted then use c e.g. pol.name =
c("nox here", "o3 there").

date.breaks Number of major x-axis intervals to use. The function will try and choose a
sensible number of dates/times as well as formatting the date/time appropri-
ately to the range being considered. This does not always work as desired
automatically. The user can therefore increase or decrease the number of
intervals by adjusting the value of date.breaks up or down.

date.format This option controls the date format on the x-axis. While timePlot gen-
erally sets the date format sensibly there can be some situations where
the user wishes to have more control. For format types see strptime. For
example, to format the date like "Jan-2012" set date.format = "%b-%Y".

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically
try and format pollutant names and units properly e.g. by subscripting the ‘2’
in NO2.

... Other graphical parameters are passed onto cutData and lattice:xyplot.
For example, timePlot passes the option hemisphere = "southern" on to
cutData to provide southern (rather than default northern) hemisphere
handling of type = "season". Similarly, most common plotting paramet-
ers, such as layout for panel arrangement and pch and cex for plot symbol
type and size and lty and lwd for line type andwidth, as passed to xyplot,
although some maybe locally managed by openair on route, e.g. axis and
title labelling options (such as xlab, ylab, main) are passed via quickText to
handle routine formatting. See examples below.

17.3 Example of use
A full set of examples is shown in the help pages— see ?timePlot for details. At the basic
level, concentrations are shown using a simple call e.g. to plot time series of NOx andO3in separate panels with their own scales.

timePlot(mydata, pollutant = c("nox", "o3"))

Often it is necessary to only consider part of a time series and using theopenair function
selectByDatemakes it easy to do this. Some examples are shown below.
To plot data only for 2003:
timePlot(selectByDate(mydata, year = 2003), pollutant = c("nox", "o3"))

Plots for several pollutants for August 2003, are shown in Figure 55.
Some other examples (not plotted) are:

122

17 The timePlot function

timePlot(selectByDate(mydata, year = 2003, month = "aug"), pollutant = c("nox",
"o3", "pm25", "pm10", "ws"))

N
O

x,
 O

3,
 P

M
2.

5,
 P

M
10

, w
in

d
sp

d.

0

100

200

300

400

500

N
O

x

0

20

40

60

O
3

0

20

40

60

80

P
M

2.
5

0
20
40
60
80

100
120

P
M

10

2

4

6

8

Aug 04 Aug 11 Aug 18 Aug 25

w
in

d
sp

d.

NOx O3 PM2.5 PM10 wind spd.

Figure 55: Time series for several variables using the timePlot and the selectByDate
functions. The data shown are for August 2003.

plot monthly means of ozone and no2
timePlot(mydata, pollutant = c("o3", "no2"), avg.time = "month")

plor 95th percentile monthly concentrations
timePlot(mydata, pollutant = c("o3", "no2"), avg.time = "month", statistic =
"percentile",

percentile = 95)

plot the number of valid records in each 2-week period
timePlot(mydata, pollutant = c("o3", "no2"), avg.time = "2 week", statistic =
"frequency")

An example of normalising data is shown in Figure 56. In this plot we have:
• Averaged the data to annual means;
• Chosen to normalise to the beginning of 2008;

123

17 The timePlot function

timePlot(mydata, pollutant = c("nox", "no2", "co", "so2", "pm10"), avg.time = "year",
normalise = "1/1/1998", lwd = 4, lty = 1, group = TRUE, ylim = c(0, 120))

no
rm

al
is

ed
 le

ve
l

20

40

60

80

100

1998 1999 2000 2001 2002 2003 2004 2005

NOx NO2 CO SO2 PM10

Figure 56:An example of normalising time series data to fix values to equal 100 at the
beginning of 1998.

• Set the line width to 4 and the line type to 1 (continuous line);
• Chosen to group the data in one panel.
Figure 56 shows that concentrations of NO2 and O3 have increased over the period1998–2005; SO2 and COhave shown the greatest reductions (by about 60%), whereasNOx concentrations have decreased by about 20%.Another example is grouping pollutants from several sites on one plot. It is easy to import

data from several sites and to plot the data in separate panels e.g.
import data from 3 sites
thedata <- importAURN(site = c("kc1", "my1", "nott"), year = 2005:2010)

plot it
timePlot(test, pollutant = "nox", type = "site", avg.time = "month")

Using the code above it is also possible to include several species. Butwhat if wewanted
to plot NOx concentrations across all sites in one panel? To do this we need to re-organisethe data, as described in subsection 5.4. An example of how to do this is shown below.
Note, in order to make referring to the columns easier, we will drop the full (long) site
name and use the site code instead.

first drop site name
thedata <- subset(thedata, select = -site)
now reshape the data using the reshape package
thedata <- melt(thedata, id.vars = c("date", "code"))
thedata <- dcast(thedata, ... ˜ code + variable)

The final step will make columns of each site/pollutant combination e.g. ‘KC1_nox’,
‘KC1_pm10’ and so on. It is then easy to use any of these names tomake the plot:

timePlot(thedata, pollutant = c("KC1_nox", "MY1_nox", "NOTT_nox"), avg.time = "month",
group = TRUE)

124

18 The calendarPlot function

An alternative way of selecting all columns containing the character ‘nox’ is to use the
grep command (see page 35). For example:

timePlot(thedata, pollutant = names(thedata)[grep(pattern = "nox", names(thedata))],
avg.time = "month", group = TRUE)

18 The calendarPlot function
18.1 Purpose

Sometimes it is very useful to visualise data in a familiar way. Calendars are the obvious
way to represent data for data on the time scale of days or months. The calendarPlot
function provides an effective way to visualise data in this way by showing daily concen-
trations laid out in a calendar format. The concentration of a species is shown by its colour.
The data can be shown in different ways. By default calendarPlot overlays the day of
themonth. However, if wind speed andwind direction are available then an arrow can be
shown for each day giving the vector-averagedwind direction. In addition, the arrow can
be scaled according to the wind speed to highlight both the direction and strength of the
wind on a particular day, which can help show the influence of meteorology on pollutant
concentrations.
calendarPlot can also show the daily mean concentration as a number on each day

and can be extended to highlight those conditions where daily mean (or maximum etc.)
concentrations are above a particular threshold. This approach is useful for highlighting
daily air quality limits e.g. when the daily mean concentration is greater than 50 µgm−3.

18.2 Options available
mydata A data frameminimally containing date and at least one other numeric vari-

able and a year. The date should be in either Date format or class POSIXct.
pollutant Mandatory. A pollutant name corresponding to a variable in a data frame

should be supplied e.g. pollutant = "nox".

year Year to plot e.g. year = 2003.
type Not yet implemented.
annotate This option controlswhat appears on each day of the calendar. Can be: "date"

- shows day of themonth; "wd" - shows vector-averagedwind direction, or
"ws" - shows vector-averaged wind direction scaled by wind speed. Finally it
can be "value" which shows the daily mean value.

statistic Statistic passed to timeAverage.
cols Colours to be used for plotting. Options include "default", "increment", "heat",

"jet" and user defined. For user defined the user can supply a list of colour
names recognised by R (type colours() to see the full list). An example
would be cols = c("yellow", "green", "blue")

limits Use this option tomanually set the colour scale limits. This is useful in the
case when there is a need for two or more plots and a consistent scale is
needed on each. Set the limits to cover the maximimum range of the data
for all plots of interest. For example, if one plot had data covering 0–60

125

18 The calendarPlot function

and another 0–100, then set limits = c(0, 100). Note that data will be
ignored if outside the limits range.

lim A threshold value to help differentiate values above and below lim. It is used
when annotate = "value". See next few options for control over the labels
used.

col.lim For the annotation of concentration labels on each day. The first sets the
colour of the text below lim and the second sets the colour of the text above
lim.

font.lim For the annotation of concentration labels on each day. The first sets the
font of the text below lim and the second sets the font of the text above lim.
Note that font = 1 is normal text and font = 2 is bold text.

cex.lim For the annotation of concentration labels on each day. The first sets the size
of the text below lim and the second sets the size of the text above lim.

digits The number of digits used to display concentration values when annotate =
"value".

data.thresh Data capture threshold passed to timeAverage. For example, data.thresh
= 75means that at least 75% of the datamust be available in a day for the
value to be calculate, else the data is removed.

main The plot title; default is pollutant and year.
key.header Addsadditional text/labels to the scale key. For example, passingcalendarPlot(mydata,

key.header = "header", key.footer = "footer")adds addition text above
and below the scale key. These arguments are passed to drawOpenKey via
quickText, applying the auto.text argument, to handle formatting.

key.footer see key.header.
key.position Location where the scale key is to plotted. Allowed arguments currently

include "top", "right", "bottom" and "left".
key Fine control of the scale key via drawOpenKey. See drawOpenKey for further

details.
auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically

try and format pollutant names and units properly e.g. by subscripting the ‘2’
in NO2.

... Other graphical parameters arepassedonto thelattice functionlattice:levelplot,
with common axis and title labelling options (such as xlab, ylab, main) being
passed to via quickText to handle routine formatting.

18.3 Example of use
The function is called in the usual way. As aminimum, a data frame, pollutant and year is
required. So to showO3 concentrations for each day in 2003 (Figure 57).It is sometimes useful to annotate the plots with other information. It is possible to
show the daily mean wind angle, which can also be scaled to wind speed. The idea here
being to provide some information on meteorological conditions on each day. Another
useful option is to set annotate = “value” in which case the daily concentration will be

126

18 The calendarPlot function

calendarPlot(mydata, pollutant = "o3", year = 2003)

O3 in 2003

S S M T W T F

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

28 29 30 31 1 2 3

January

S S M T W T F

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

February

S S M T W T F

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

29 30 31 1 2 3 4

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

22 23 24 25 26 27 28

March

S S M T W T F

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

3 4 5 6 7 8 9

26 27 28 29 30 1 2

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

29 30 31 1 2 3 4

April

S S M T W T F

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

31 1 2 3 4 5 6

24 25 26 27 28 29 30

17 18 19 20 21 22 23

10 11 12 13 14 15 16

3 4 5 6 7 8 9

26 27 28 29 30 1 2

May

S S M T W T F

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

5 6 7 8 9 10 11

28 29 30 1 2 3 4

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

31 1 2 3 4 5 6

June

S S M T W T F

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

2 3 4 5 6 7 8

26 27 28 29 30 31 1

19 20 21 22 23 24 25

12 13 14 15 16 17 18

5 6 7 8 9 10 11

28 29 30 1 2 3 4

July

S S M T W T F

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

30 31 1 2 3 4 5

23 24 25 26 27 28 29

16 17 18 19 20 21 22

9 10 11 12 13 14 15

2 3 4 5 6 7 8

26 27 28 29 30 31 1

August

S S M T W T F

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

4 5 6 7 8 9 10

27 28 29 30 1 2 3

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

30 31 1 2 3 4 5

September

S S M T W T F

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

1 2 3 4 5 6 7

25 26 27 28 29 30 31

18 19 20 21 22 23 24

11 12 13 14 15 16 17

4 5 6 7 8 9 10

27 28 29 30 1 2 3

October

S S M T W T F

29 30 1 2 3 4 5

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

29 30 1 2 3 4 5

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

29 30 1 2 3 4 5

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

29 30 1 2 3 4 5

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

29 30 1 2 3 4 5

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

29 30 1 2 3 4 5

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

29 30 1 2 3 4 5

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

29 30 1 2 3 4 5

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

29 30 1 2 3 4 5

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

29 30 1 2 3 4 5

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

29 30 1 2 3 4 5

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

29 30 1 2 3 4 5

22 23 24 25 26 27 28

15 16 17 18 19 20 21

8 9 10 11 12 13 14

1 2 3 4 5 6 7

25 26 27 28 29 30 31

November

S S M T W T F

3 4 5 6 7 8 9

27 28 29 30 31 1 2

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

29 30 1 2 3 4 5

3 4 5 6 7 8 9

27 28 29 30 31 1 2

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

29 30 1 2 3 4 5

3 4 5 6 7 8 9

27 28 29 30 31 1 2

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

29 30 1 2 3 4 5

3 4 5 6 7 8 9

27 28 29 30 31 1 2

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

29 30 1 2 3 4 5

3 4 5 6 7 8 9

27 28 29 30 31 1 2

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

29 30 1 2 3 4 5

3 4 5 6 7 8 9

27 28 29 30 31 1 2

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

29 30 1 2 3 4 5

3 4 5 6 7 8 9

27 28 29 30 31 1 2

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

29 30 1 2 3 4 5

3 4 5 6 7 8 9

27 28 29 30 31 1 2

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

29 30 1 2 3 4 5

3 4 5 6 7 8 9

27 28 29 30 31 1 2

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

29 30 1 2 3 4 5

3 4 5 6 7 8 9

27 28 29 30 31 1 2

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

29 30 1 2 3 4 5

3 4 5 6 7 8 9

27 28 29 30 31 1 2

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

29 30 1 2 3 4 5

3 4 5 6 7 8 9

27 28 29 30 31 1 2

20 21 22 23 24 25 26

13 14 15 16 17 18 19

6 7 8 9 10 11 12

29 30 1 2 3 4 5

December

5

10

15

20

25

30

35

Figure 57: calendarPlot for O3 concentrations in 2003.

shown on each day. Furthermore, it is sometimes useful to highlight particular values
more clearly. For example, to highlight daily mean PM10 concentrations above 50 µgm−3.
This is where setting lim (a concentration limit) is useful. In setting lim the user can then
differentiate the values below and above lim by colour of text, size of text and type of text
e.g. plain and bold.
Figure58highlights thosedayswherePM10 concentrations exceed50µgm−3 bymaking

the annotation for those days bigger, bold and orange. Plotting the data in this way clearly
shows the days where PM10 >50 µgm−3.
Other openair functions can be used to plot other statistics. For example, rollingMean

could be used to calculate rolling 8-hourmeanO3 concentrations. Then, calendarPlotcould be used with statistic = “max” to show days where the maximum daily rolling
8-hour meanO3 concentration is greater than a certain threshold e.g. 100 or 120 µgm−3.
To showwind angle, scaled to wind speed (Figure 59).
Note again that selectByDate can be useful. For example, to plot select months:
calendarPlot(selectByDate(mydata, year = 2003, month = c("jun", "jul",

"aug")), pollutant = "o3", year = 2003)

127

18 The calendarPlot function

data(mydata) ## make sure openair 'mydata' loaded fresh
calendarPlot(mydata, pollutant = "pm10", annotate = "value", lim = 50,

cols = "Purples", col.lim = c("black", "orange"), layout = c(4, 3))

PM10 in 2003

S S M T W T F

1 2 3 4 5 6 7

28 29 30 31

1 2 3 4 5 6 7

28 29 30 31

1 2 3 4 5 6 7

28 29 30 31

1 2 3 4 5 6 7

28 29 30 31

1 2 3 4 5 6 7

28 29 30 31

1 2 3 4 5 6 7

28 29 30 31

1 2 3 4 5 6 7

28 29 30 31

1 2 3 4 5 6 7

28 29 30 31

1 2 3 4 5 6 7

28 29 30 31

1 2 3 4 5 6 7

28 29 30 31

1 2 3 4 5 6 7

28 29 30 31

1 2 3 4 5 6 7

28 29 30 31

28 32 36 25 15 15 36

45 27 33 36 26 26 56
28 52 32 50 47 52 42

15 20 18 27 16 18 17

22 23 17

28 32 36 25 15 15 36

45 27 33 36 26 26 56
28 52 32 50 47 52 42

15 20 18 27 16 18 17

22 23 17

28 32 36 25 15 15 36

45 27 33 36 26 26 56
28 52 32 50 47 52 42

15 20 18 27 16 18 17

22 23 17

28 32 36 25 15 15 36

45 27 33 36 26 26 56
28 52 32 50 47 52 42

15 20 18 27 16 18 17

22 23 17

28 32 36 25 15 15 36

45 27 33 36 26 26 56
28 52 32 50 47 52 42

15 20 18 27 16 18 17

22 23 17

28 32 36 25 15 15 36

45 27 33 36 26 26 56
28 52 32 50 47 52 42

15 20 18 27 16 18 17

22 23 17

28 32 36 25 15 15 36

45 27 33 36 26 26 56
28 52 32 50 47 52 42

15 20 18 27 16 18 17

22 23 17

28 32 36 25 15 15 36

45 27 33 36 26 26 56
28 52 32 50 47 52 42

15 20 18 27 16 18 17

22 23 17

28 32 36 25 15 15 36

45 27 33 36 26 26 56
28 52 32 50 47 52 42

15 20 18 27 16 18 17

22 23 17

28 32 36 25 15 15 36

45 27 33 36 26 26 56
28 52 32 50 47 52 42

15 20 18 27 16 18 17

22 23 17

28 32 36 25 15 15 36

45 27 33 36 26 26 56
28 52 32 50 47 52 42

15 20 18 27 16 18 17

22 23 17

28 32 36 25 15 15 36

45 27 33 36 26 26 56
28 52 32 50 47 52 42

15 20 18 27 16 18 17

22 23 17

January

S S M T W T F

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

25 26 27 28 29 30 31

1 2 3 4 5 6 7

25 26 27 28 29 30 31

77 48 49 64 61 51 36

25 38 38 51 70 60 73
40 21 41 42 30 44 39

31 31 37 25 22 67 47

77 48 49 64 61 51 36

25 38 38 51 70 60 73
40 21 41 42 30 44 39

31 31 37 25 22 67 47

77 48 49 64 61 51 36

25 38 38 51 70 60 73
40 21 41 42 30 44 39

31 31 37 25 22 67 47

77 48 49 64 61 51 36

25 38 38 51 70 60 73
40 21 41 42 30 44 39

31 31 37 25 22 67 47

77 48 49 64 61 51 36

25 38 38 51 70 60 73
40 21 41 42 30 44 39

31 31 37 25 22 67 47

77 48 49 64 61 51 36

25 38 38 51 70 60 73
40 21 41 42 30 44 39

31 31 37 25 22 67 47

77 48 49 64 61 51 36

25 38 38 51 70 60 73
40 21 41 42 30 44 39

31 31 37 25 22 67 47

77 48 49 64 61 51 36

25 38 38 51 70 60 73
40 21 41 42 30 44 39

31 31 37 25 22 67 47

77 48 49 64 61 51 36

25 38 38 51 70 60 73
40 21 41 42 30 44 39

31 31 37 25 22 67 47

77 48 49 64 61 51 36

25 38 38 51 70 60 73
40 21 41 42 30 44 39

31 31 37 25 22 67 47

77 48 49 64 61 51 36

25 38 38 51 70 60 73
40 21 41 42 30 44 39

31 31 37 25 22 67 47

77 48 49 64 61 51 36

25 38 38 51 70 60 73
40 21 41 42 30 44 39

31 31 37 25 22 67 47

February

S S M T W T F

1 2 3 4

22 23 24 25 26 27 28

1 2 3 4

22 23 24 25 26 27 28

1 2 3 4

22 23 24 25 26 27 28

1 2 3 4

22 23 24 25 26 27 28

1 2 3 4

22 23 24 25 26 27 28

1 2 3 4

22 23 24 25 26 27 28

1 2 3 4

22 23 24 25 26 27 28

1 2 3 4

22 23 24 25 26 27 28

1 2 3 4

22 23 24 25 26 27 28

1 2 3 4

22 23 24 25 26 27 28

1 2 3 4

22 23 24 25 26 27 28

1 2 3 4

22 23 24 25 26 27 28

57 28 34

44 47 65 61 65 54 58
35 42 46 38 45 55 44

40 41 51 42 21 28 27

36 25 41 39 42 34 36

57 28 34

44 47 65 61 65 54 58
35 42 46 38 45 55 44

40 41 51 42 21 28 27

36 25 41 39 42 34 36

57 28 34

44 47 65 61 65 54 58
35 42 46 38 45 55 44

40 41 51 42 21 28 27

36 25 41 39 42 34 36

57 28 34

44 47 65 61 65 54 58
35 42 46 38 45 55 44

40 41 51 42 21 28 27

36 25 41 39 42 34 36

57 28 34

44 47 65 61 65 54 58
35 42 46 38 45 55 44

40 41 51 42 21 28 27

36 25 41 39 42 34 36

57 28 34

44 47 65 61 65 54 58
35 42 46 38 45 55 44

40 41 51 42 21 28 27

36 25 41 39 42 34 36

57 28 34

44 47 65 61 65 54 58
35 42 46 38 45 55 44

40 41 51 42 21 28 27

36 25 41 39 42 34 36

57 28 34

44 47 65 61 65 54 58
35 42 46 38 45 55 44

40 41 51 42 21 28 27

36 25 41 39 42 34 36

57 28 34

44 47 65 61 65 54 58
35 42 46 38 45 55 44

40 41 51 42 21 28 27

36 25 41 39 42 34 36

57 28 34

44 47 65 61 65 54 58
35 42 46 38 45 55 44

40 41 51 42 21 28 27

36 25 41 39 42 34 36

57 28 34

44 47 65 61 65 54 58
35 42 46 38 45 55 44

40 41 51 42 21 28 27

36 25 41 39 42 34 36

57 28 34

44 47 65 61 65 54 58
35 42 46 38 45 55 44

40 41 51 42 21 28 27

36 25 41 39 42 34 36

March

S S M T W T F

3 4 5 6 7 8 9

1 2

29 30 31

3 4 5 6 7 8 9

1 2

29 30 31

3 4 5 6 7 8 9

1 2

29 30 31

3 4 5 6 7 8 9

1 2

29 30 31

3 4 5 6 7 8 9

1 2

29 30 31

3 4 5 6 7 8 9

1 2

29 30 31

3 4 5 6 7 8 9

1 2

29 30 31

3 4 5 6 7 8 9

1 2

29 30 31

3 4 5 6 7 8 9

1 2

29 30 31

3 4 5 6 7 8 9

1 2

29 30 31

3 4 5 6 7 8 9

1 2

29 30 31

3 4 5 6 7 8 9

1 2

29 30 31

34 38 33 40 41

24 61 40 50 49 58 41

37 33 60 66 58 53 34

14 13 31 34 25 18 41

34 18 22 22

34 38 33 40 41

24 61 40 50 49 58 41

37 33 60 66 58 53 34

14 13 31 34 25 18 41

34 18 22 22

34 38 33 40 41

24 61 40 50 49 58 41

37 33 60 66 58 53 34

14 13 31 34 25 18 41

34 18 22 22

34 38 33 40 41

24 61 40 50 49 58 41

37 33 60 66 58 53 34

14 13 31 34 25 18 41

34 18 22 22

34 38 33 40 41

24 61 40 50 49 58 41

37 33 60 66 58 53 34

14 13 31 34 25 18 41

34 18 22 22

34 38 33 40 41

24 61 40 50 49 58 41

37 33 60 66 58 53 34

14 13 31 34 25 18 41

34 18 22 22

34 38 33 40 41

24 61 40 50 49 58 41

37 33 60 66 58 53 34

14 13 31 34 25 18 41

34 18 22 22

34 38 33 40 41

24 61 40 50 49 58 41

37 33 60 66 58 53 34

14 13 31 34 25 18 41

34 18 22 22

34 38 33 40 41

24 61 40 50 49 58 41

37 33 60 66 58 53 34

14 13 31 34 25 18 41

34 18 22 22

34 38 33 40 41

24 61 40 50 49 58 41

37 33 60 66 58 53 34

14 13 31 34 25 18 41

34 18 22 22

34 38 33 40 41

24 61 40 50 49 58 41

37 33 60 66 58 53 34

14 13 31 34 25 18 41

34 18 22 22

34 38 33 40 41

24 61 40 50 49 58 41

37 33 60 66 58 53 34

14 13 31 34 25 18 41

34 18 22 22

April

S S M T W T F

1 2 3 4 5 6

26 27 28 29 30

1 2 3 4 5 6

26 27 28 29 30

1 2 3 4 5 6

26 27 28 29 30

1 2 3 4 5 6

26 27 28 29 30

1 2 3 4 5 6

26 27 28 29 30

1 2 3 4 5 6

26 27 28 29 30

1 2 3 4 5 6

26 27 28 29 30

1 2 3 4 5 6

26 27 28 29 30

1 2 3 4 5 6

26 27 28 29 30

1 2 3 4 5 6

26 27 28 29 30

1 2 3 4 5 6

26 27 28 29 30

1 2 3 4 5 6

26 27 28 29 30

54
29 16 28 42 44 46 45

37 36 42 45 41 46 42

33 27 34 34 22 35 36

32 30 24 23 32 28 43

40 33

54
29 16 28 42 44 46 45

37 36 42 45 41 46 42

33 27 34 34 22 35 36

32 30 24 23 32 28 43

40 33

54
29 16 28 42 44 46 45

37 36 42 45 41 46 42

33 27 34 34 22 35 36

32 30 24 23 32 28 43

40 33

54
29 16 28 42 44 46 45

37 36 42 45 41 46 42

33 27 34 34 22 35 36

32 30 24 23 32 28 43

40 33

54
29 16 28 42 44 46 45

37 36 42 45 41 46 42

33 27 34 34 22 35 36

32 30 24 23 32 28 43

40 33

54
29 16 28 42 44 46 45

37 36 42 45 41 46 42

33 27 34 34 22 35 36

32 30 24 23 32 28 43

40 33

54
29 16 28 42 44 46 45

37 36 42 45 41 46 42

33 27 34 34 22 35 36

32 30 24 23 32 28 43

40 33

54
29 16 28 42 44 46 45

37 36 42 45 41 46 42

33 27 34 34 22 35 36

32 30 24 23 32 28 43

40 33

54
29 16 28 42 44 46 45

37 36 42 45 41 46 42

33 27 34 34 22 35 36

32 30 24 23 32 28 43

40 33

54
29 16 28 42 44 46 45

37 36 42 45 41 46 42

33 27 34 34 22 35 36

32 30 24 23 32 28 43

40 33

54
29 16 28 42 44 46 45

37 36 42 45 41 46 42

33 27 34 34 22 35 36

32 30 24 23 32 28 43

40 33

54
29 16 28 42 44 46 45

37 36 42 45 41 46 42

33 27 34 34 22 35 36

32 30 24 23 32 28 43

40 33

May

S S M T W T F

5 6 7 8 9 10 11

1 2 3 4

31

5 6 7 8 9 10 11

1 2 3 4

31

5 6 7 8 9 10 11

1 2 3 4

31

5 6 7 8 9 10 11

1 2 3 4

31

5 6 7 8 9 10 11

1 2 3 4

31

5 6 7 8 9 10 11

1 2 3 4

31

5 6 7 8 9 10 11

1 2 3 4

31

5 6 7 8 9 10 11

1 2 3 4

31

5 6 7 8 9 10 11

1 2 3 4

31

5 6 7 8 9 10 11

1 2 3 4

31

5 6 7 8 9 10 11

1 2 3 4

31

5 6 7 8 9 10 11

1 2 3 4

31

32 33 47

34 41 27 24 32 44 44

33 27 54 53 44 38 28

39 40 39 54 45 39 29

38 42 42 48 45 43

32 33 47

34 41 27 24 32 44 44

33 27 54 53 44 38 28

39 40 39 54 45 39 29

38 42 42 48 45 43

32 33 47

34 41 27 24 32 44 44

33 27 54 53 44 38 28

39 40 39 54 45 39 29

38 42 42 48 45 43

32 33 47

34 41 27 24 32 44 44

33 27 54 53 44 38 28

39 40 39 54 45 39 29

38 42 42 48 45 43

32 33 47

34 41 27 24 32 44 44

33 27 54 53 44 38 28

39 40 39 54 45 39 29

38 42 42 48 45 43

32 33 47

34 41 27 24 32 44 44

33 27 54 53 44 38 28

39 40 39 54 45 39 29

38 42 42 48 45 43

32 33 47

34 41 27 24 32 44 44

33 27 54 53 44 38 28

39 40 39 54 45 39 29

38 42 42 48 45 43

32 33 47

34 41 27 24 32 44 44

33 27 54 53 44 38 28

39 40 39 54 45 39 29

38 42 42 48 45 43

32 33 47

34 41 27 24 32 44 44

33 27 54 53 44 38 28

39 40 39 54 45 39 29

38 42 42 48 45 43

32 33 47

34 41 27 24 32 44 44

33 27 54 53 44 38 28

39 40 39 54 45 39 29

38 42 42 48 45 43

32 33 47

34 41 27 24 32 44 44

33 27 54 53 44 38 28

39 40 39 54 45 39 29

38 42 42 48 45 43

32 33 47

34 41 27 24 32 44 44

33 27 54 53 44 38 28

39 40 39 54 45 39 29

38 42 42 48 45 43

June

S S M T W T F

2 3 4 5 6 7 8

1

28 29 30

2 3 4 5 6 7 8

1

28 29 30

2 3 4 5 6 7 8

1

28 29 30

2 3 4 5 6 7 8

1

28 29 30

2 3 4 5 6 7 8

1

28 29 30

2 3 4 5 6 7 8

1

28 29 30

2 3 4 5 6 7 8

1

28 29 30

2 3 4 5 6 7 8

1

28 29 30

2 3 4 5 6 7 8

1

28 29 30

2 3 4 5 6 7 8

1

28 29 30

2 3 4 5 6 7 8

1

28 29 30

2 3 4 5 6 7 8

1

28 29 30

31 23 43 40 30 43

37 36 41 46 37 43 40

35 35 47 50 58 42 43

28 27 40 44 40 49 25

33 27 24 25

31 23 43 40 30 43

37 36 41 46 37 43 40

35 35 47 50 58 42 43

28 27 40 44 40 49 25

33 27 24 25

31 23 43 40 30 43

37 36 41 46 37 43 40

35 35 47 50 58 42 43

28 27 40 44 40 49 25

33 27 24 25

31 23 43 40 30 43

37 36 41 46 37 43 40

35 35 47 50 58 42 43

28 27 40 44 40 49 25

33 27 24 25

31 23 43 40 30 43

37 36 41 46 37 43 40

35 35 47 50 58 42 43

28 27 40 44 40 49 25

33 27 24 25

31 23 43 40 30 43

37 36 41 46 37 43 40

35 35 47 50 58 42 43

28 27 40 44 40 49 25

33 27 24 25

31 23 43 40 30 43

37 36 41 46 37 43 40

35 35 47 50 58 42 43

28 27 40 44 40 49 25

33 27 24 25

31 23 43 40 30 43

37 36 41 46 37 43 40

35 35 47 50 58 42 43

28 27 40 44 40 49 25

33 27 24 25

31 23 43 40 30 43

37 36 41 46 37 43 40

35 35 47 50 58 42 43

28 27 40 44 40 49 25

33 27 24 25

31 23 43 40 30 43

37 36 41 46 37 43 40

35 35 47 50 58 42 43

28 27 40 44 40 49 25

33 27 24 25

31 23 43 40 30 43

37 36 41 46 37 43 40

35 35 47 50 58 42 43

28 27 40 44 40 49 25

33 27 24 25

31 23 43 40 30 43

37 36 41 46 37 43 40

35 35 47 50 58 42 43

28 27 40 44 40 49 25

33 27 24 25

July

S S M T W T F

1 2 3 4 5

26 27 28 29 30 31

1 2 3 4 5

26 27 28 29 30 31

1 2 3 4 5

26 27 28 29 30 31

1 2 3 4 5

26 27 28 29 30 31

1 2 3 4 5

26 27 28 29 30 31

1 2 3 4 5

26 27 28 29 30 31

1 2 3 4 5

26 27 28 29 30 31

1 2 3 4 5

26 27 28 29 30 31

1 2 3 4 5

26 27 28 29 30 31

1 2 3 4 5

26 27 28 29 30 31

1 2 3 4 5

26 27 28 29 30 31

1 2 3 4 5

26 27 28 29 30 31

18 24

22 23 14 27 30 28 18

23 29 48 26 35 42 37

72 68 70 52 40 22 28

28 36 50 46 62 51 66
48

18 24

22 23 14 27 30 28 18

23 29 48 26 35 42 37

72 68 70 52 40 22 28

28 36 50 46 62 51 66
48

18 24

22 23 14 27 30 28 18

23 29 48 26 35 42 37

72 68 70 52 40 22 28

28 36 50 46 62 51 66
48

18 24

22 23 14 27 30 28 18

23 29 48 26 35 42 37

72 68 70 52 40 22 28

28 36 50 46 62 51 66
48

18 24

22 23 14 27 30 28 18

23 29 48 26 35 42 37

72 68 70 52 40 22 28

28 36 50 46 62 51 66
48

18 24

22 23 14 27 30 28 18

23 29 48 26 35 42 37

72 68 70 52 40 22 28

28 36 50 46 62 51 66
48

18 24

22 23 14 27 30 28 18

23 29 48 26 35 42 37

72 68 70 52 40 22 28

28 36 50 46 62 51 66
48

18 24

22 23 14 27 30 28 18

23 29 48 26 35 42 37

72 68 70 52 40 22 28

28 36 50 46 62 51 66
48

18 24

22 23 14 27 30 28 18

23 29 48 26 35 42 37

72 68 70 52 40 22 28

28 36 50 46 62 51 66
48

18 24

22 23 14 27 30 28 18

23 29 48 26 35 42 37

72 68 70 52 40 22 28

28 36 50 46 62 51 66
48

18 24

22 23 14 27 30 28 18

23 29 48 26 35 42 37

72 68 70 52 40 22 28

28 36 50 46 62 51 66
48

18 24

22 23 14 27 30 28 18

23 29 48 26 35 42 37

72 68 70 52 40 22 28

28 36 50 46 62 51 66
48

August

S S M T W T F

4 5 6 7 8 9 10

1 2 3

30 31

4 5 6 7 8 9 10

1 2 3

30 31

4 5 6 7 8 9 10

1 2 3

30 31

4 5 6 7 8 9 10

1 2 3

30 31

4 5 6 7 8 9 10

1 2 3

30 31

4 5 6 7 8 9 10

1 2 3

30 31

4 5 6 7 8 9 10

1 2 3

30 31

4 5 6 7 8 9 10

1 2 3

30 31

4 5 6 7 8 9 10

1 2 3

30 31

4 5 6 7 8 9 10

1 2 3

30 31

4 5 6 7 8 9 10

1 2 3

30 31

4 5 6 7 8 9 10

1 2 3

30 31

20 19 43 39

63 45 37 21 34 43 46

42 39 51 54 59 66 66
35 29 34 23 21 50 27

20 33 46 51 50

20 19 43 39

63 45 37 21 34 43 46

42 39 51 54 59 66 66
35 29 34 23 21 50 27

20 33 46 51 50

20 19 43 39

63 45 37 21 34 43 46

42 39 51 54 59 66 66
35 29 34 23 21 50 27

20 33 46 51 50

20 19 43 39

63 45 37 21 34 43 46

42 39 51 54 59 66 66
35 29 34 23 21 50 27

20 33 46 51 50

20 19 43 39

63 45 37 21 34 43 46

42 39 51 54 59 66 66
35 29 34 23 21 50 27

20 33 46 51 50

20 19 43 39

63 45 37 21 34 43 46

42 39 51 54 59 66 66
35 29 34 23 21 50 27

20 33 46 51 50

20 19 43 39

63 45 37 21 34 43 46

42 39 51 54 59 66 66
35 29 34 23 21 50 27

20 33 46 51 50

20 19 43 39

63 45 37 21 34 43 46

42 39 51 54 59 66 66
35 29 34 23 21 50 27

20 33 46 51 50

20 19 43 39

63 45 37 21 34 43 46

42 39 51 54 59 66 66
35 29 34 23 21 50 27

20 33 46 51 50

20 19 43 39

63 45 37 21 34 43 46

42 39 51 54 59 66 66
35 29 34 23 21 50 27

20 33 46 51 50

20 19 43 39

63 45 37 21 34 43 46

42 39 51 54 59 66 66
35 29 34 23 21 50 27

20 33 46 51 50

20 19 43 39

63 45 37 21 34 43 46

42 39 51 54 59 66 66
35 29 34 23 21 50 27

20 33 46 51 50
September

S S M T W T F

1 2 3 4 5 6 7

27 28 29 30

1 2 3 4 5 6 7

27 28 29 30

1 2 3 4 5 6 7

27 28 29 30

1 2 3 4 5 6 7

27 28 29 30

1 2 3 4 5 6 7

27 28 29 30

1 2 3 4 5 6 7

27 28 29 30

1 2 3 4 5 6 7

27 28 29 30

1 2 3 4 5 6 7

27 28 29 30

1 2 3 4 5 6 7

27 28 29 30

1 2 3 4 5 6 7

27 28 29 30

1 2 3 4 5 6 7

27 28 29 30

1 2 3 4 5 6 7

27 28 29 30

34 14 45 56 31 31 32

29 19 16 30 28 20 25

40 33 46 43 36 29 29

17 16 31 24 33 40 32

30 36 29

34 14 45 56 31 31 32

29 19 16 30 28 20 25

40 33 46 43 36 29 29

17 16 31 24 33 40 32

30 36 29

34 14 45 56 31 31 32

29 19 16 30 28 20 25

40 33 46 43 36 29 29

17 16 31 24 33 40 32

30 36 29

34 14 45 56 31 31 32

29 19 16 30 28 20 25

40 33 46 43 36 29 29

17 16 31 24 33 40 32

30 36 29

34 14 45 56 31 31 32

29 19 16 30 28 20 25

40 33 46 43 36 29 29

17 16 31 24 33 40 32

30 36 29

34 14 45 56 31 31 32

29 19 16 30 28 20 25

40 33 46 43 36 29 29

17 16 31 24 33 40 32

30 36 29

34 14 45 56 31 31 32

29 19 16 30 28 20 25

40 33 46 43 36 29 29

17 16 31 24 33 40 32

30 36 29

34 14 45 56 31 31 32

29 19 16 30 28 20 25

40 33 46 43 36 29 29

17 16 31 24 33 40 32

30 36 29

34 14 45 56 31 31 32

29 19 16 30 28 20 25

40 33 46 43 36 29 29

17 16 31 24 33 40 32

30 36 29

34 14 45 56 31 31 32

29 19 16 30 28 20 25

40 33 46 43 36 29 29

17 16 31 24 33 40 32

30 36 29

34 14 45 56 31 31 32

29 19 16 30 28 20 25

40 33 46 43 36 29 29

17 16 31 24 33 40 32

30 36 29

34 14 45 56 31 31 32

29 19 16 30 28 20 25

40 33 46 43 36 29 29

17 16 31 24 33 40 32

30 36 29

October

S S M T W T F

1 2 3 4 5

25 26 27 28 29 30 31

1 2 3 4 5

25 26 27 28 29 30 31

1 2 3 4 5

25 26 27 28 29 30 31

1 2 3 4 5

25 26 27 28 29 30 31

1 2 3 4 5

25 26 27 28 29 30 31

1 2 3 4 5

25 26 27 28 29 30 31

1 2 3 4 5

25 26 27 28 29 30 31

1 2 3 4 5

25 26 27 28 29 30 31

1 2 3 4 5

25 26 27 28 29 30 31

1 2 3 4 5

25 26 27 28 29 30 31

1 2 3 4 5

25 26 27 28 29 30 31

1 2 3 4 5

25 26 27 28 29 30 31

30 30

10 9 24 40 37 50 54
34 20 42 38 39 45 21

38 38 43 42 37 52 49

27 32 45 59 40 59 50

30 30

10 9 24 40 37 50 54
34 20 42 38 39 45 21

38 38 43 42 37 52 49

27 32 45 59 40 59 50

30 30

10 9 24 40 37 50 54
34 20 42 38 39 45 21

38 38 43 42 37 52 49

27 32 45 59 40 59 50

30 30

10 9 24 40 37 50 54
34 20 42 38 39 45 21

38 38 43 42 37 52 49

27 32 45 59 40 59 50

30 30

10 9 24 40 37 50 54
34 20 42 38 39 45 21

38 38 43 42 37 52 49

27 32 45 59 40 59 50

30 30

10 9 24 40 37 50 54
34 20 42 38 39 45 21

38 38 43 42 37 52 49

27 32 45 59 40 59 50

30 30

10 9 24 40 37 50 54
34 20 42 38 39 45 21

38 38 43 42 37 52 49

27 32 45 59 40 59 50

30 30

10 9 24 40 37 50 54
34 20 42 38 39 45 21

38 38 43 42 37 52 49

27 32 45 59 40 59 50

30 30

10 9 24 40 37 50 54
34 20 42 38 39 45 21

38 38 43 42 37 52 49

27 32 45 59 40 59 50

30 30

10 9 24 40 37 50 54
34 20 42 38 39 45 21

38 38 43 42 37 52 49

27 32 45 59 40 59 50

30 30

10 9 24 40 37 50 54
34 20 42 38 39 45 21

38 38 43 42 37 52 49

27 32 45 59 40 59 50

30 30

10 9 24 40 37 50 54
34 20 42 38 39 45 21

38 38 43 42 37 52 49

27 32 45 59 40 59 50

November

S S M T W T F

3 4 5 6 7 8 9

1 2

29 30

3 4 5 6 7 8 9

1 2

29 30

3 4 5 6 7 8 9

1 2

29 30

3 4 5 6 7 8 9

1 2

29 30

3 4 5 6 7 8 9

1 2

29 30

3 4 5 6 7 8 9

1 2

29 30

3 4 5 6 7 8 9

1 2

29 30

3 4 5 6 7 8 9

1 2

29 30

3 4 5 6 7 8 9

1 2

29 30

3 4 5 6 7 8 9

1 2

29 30

3 4 5 6 7 8 9

1 2

29 30

3 4 5 6 7 8 9

1 2

29 30

17 17 18 24 28

31 13 20 28 21 12 14

24 20 22 65 52 55 69
29 27 41 50 47 34 34

30 34 28 23 27

17 17 18 24 28

31 13 20 28 21 12 14

24 20 22 65 52 55 69
29 27 41 50 47 34 34

30 34 28 23 27

17 17 18 24 28

31 13 20 28 21 12 14

24 20 22 65 52 55 69
29 27 41 50 47 34 34

30 34 28 23 27

17 17 18 24 28

31 13 20 28 21 12 14

24 20 22 65 52 55 69
29 27 41 50 47 34 34

30 34 28 23 27

17 17 18 24 28

31 13 20 28 21 12 14

24 20 22 65 52 55 69
29 27 41 50 47 34 34

30 34 28 23 27

17 17 18 24 28

31 13 20 28 21 12 14

24 20 22 65 52 55 69
29 27 41 50 47 34 34

30 34 28 23 27

17 17 18 24 28

31 13 20 28 21 12 14

24 20 22 65 52 55 69
29 27 41 50 47 34 34

30 34 28 23 27

17 17 18 24 28

31 13 20 28 21 12 14

24 20 22 65 52 55 69
29 27 41 50 47 34 34

30 34 28 23 27

17 17 18 24 28

31 13 20 28 21 12 14

24 20 22 65 52 55 69
29 27 41 50 47 34 34

30 34 28 23 27

17 17 18 24 28

31 13 20 28 21 12 14

24 20 22 65 52 55 69
29 27 41 50 47 34 34

30 34 28 23 27

17 17 18 24 28

31 13 20 28 21 12 14

24 20 22 65 52 55 69
29 27 41 50 47 34 34

30 34 28 23 27

17 17 18 24 28

31 13 20 28 21 12 14

24 20 22 65 52 55 69
29 27 41 50 47 34 34

30 34 28 23 27

December

10

20

30

40

50

60

70

Figure 58: calendarPlot for PM10 concentrations in 2003with annotations highlightingthose days where the concentration of PM10 >50 µgm−3. The numbers show
the PM10 concentration in µgm−3.

128

18 The calendarPlot function

calendarPlot(mydata, pollutant = "o3", year = 2003, annotate = "ws")

O3 in 2003

S S M T W T F

January

S S M T W T F

February

S S M T W T F

March

S S M T W T F

April

S S M T W T F

May

S S M T W T F

June

S S M T W T F

July

S S M T W T F

August

S S M T W T F

September

S S M T W T F

October

S S M T W T F

November

S S M T W T F

December

5

10

15

20

25

30

35

Figure 59: calendarPlot for O3 concentrations in 2003with annotations showing windangle scaled to wind speed i.e. the longer the arrow, the higher the wind speed.
It shows for example highO3 concentrations on the 17 and 18th of April wereassociated with strong north-easterly winds.

129

19 The TheilSen function

19 The TheilSen function
19.1 Purpose

see also
smoothTrend

timePlot
Note, since version 0.5-11 openair now uses the Theil-Sen method to calculate the regression
parameters including slope, uncertainty in the slope and the p value. This may result in slight
differences in the p-estimate compared with the previous MannKendall function, but the slope
estimates and uncertainties remain the same. Note that users can still for the moment call the
TheilSen function by calling MannKendall.
Calculating trends for air pollutants is one of the most important and common tasks

that can be undertaken. Trends are calculated for all sorts of reasons. Sometimes it is
useful to have a general idea about how concentrations might have changed. On other
occasions a more definitive analysis is required; for example, to establish statistically
whether a trend is significant or not. The whole area of trend calculation is a complex one
and frequently trends are calculated with little consideration as to their validity. Perhaps
the most common approach is to apply linear regression and not think twice about it.
However, there can bemany pitfalls when using ordinary linear regression, such as the
assumption of normality, autocorrelation etc.
One commonly used approach for trend calculation is air pollution is the non-parametric

Mann-Kendall approach (Hirsch et al., 1982).12Wilcox (2010) provides an excellent case
for using ‘modern methods’ for regression including the benefits of non-parametric ap-
proaches andbootstrap simulations. TheTheil-Senapproachprovides consistencybetween
the p value and the uncertainty intervals in the slope. Testing shows that theMann-Kendall
test for slope and it’s associated p value lead to very similar results to the Theil-Sen estim-
ates. Note also that the all the regression parameters are estimated through bootstrap
resampling.
The Theil-Sen method dates back to 1950, but the basic idea pre-dates 1950 (Theil,

1950; Sen, 1968). It is one of thosemethods that required the invention of fast computers
to be practical. The basic idea is as follows. Given a set of n x , y pairs, the slopes between
all pairs of points are calculated. Note, the number of slopes can increase by≈ n2 so that
the number of slopes can increase rapidly as the length of the data set increases. The
Theil-Sen estimate of the slope is the median of all these slopes. The advantage of the
using the Theil-Sen estimator is that it tends to yield accurate confidence intervals even
with non-normal data and heteroscedasticity (non-constant error variance). It is also
resistant to outliers — both characteristics can be important in air pollution. As previ-
ously mentioned, the estimates of these parameters can bemademore robust through
bootstrap-resampling, which further adds to the computational burden, but is not an issue
formost time series which are expressed either asmonthly or annual means. Bootstrap
resampling also provides the estimate of p.
An issue that can be very important for time series is dependence or autocorrelation in

the data. Normal (in the statistical sense) statistics assume that data are independent, but
in time series this is rarely the case. The issue is that neighbouring data points are similar to
one another (correlated) and therefore not independent. Ignoring this dependence would
tend to give an overly optimistic impression of uncertainties. However, taking account
of it is far from simple. A discussion of these issues is beyond the aims of this report and
readers are referred to standard statistical texts on the issue. In openairwe follow the
suggestion of Kunsch (1989) of setting the block length to n1/3 where n is the length of the
time series.
There is a temptation when considering trends to use all the available data. Why?

Often it is useful to consider specific periods. For example, is there any evidence that
12Muchmore information on the background to this function and how it works is needed.

130

19 The TheilSen function

concentrations of NOx have decreased since 2000? Clearly, the time period used dependson both the data and the questions, but is is good to be aware that considering subsets of
data can be very insightful.
Another aspect is that almost all trends are shown asmean concentration versus time;

typically by year. Such analyses are very useful for understanding how concentrations
have changed through time and for comparison with air quality limits and regulations.
However, if one is interested in understandingwhy trends are as they are, it can be helpful
to consider how concentrations vary in other ways. The trend functions in openair do just
this. Trends can be plotted by day of the week, month, hour of the day, by wind direction
sector and by different wind speed ranges. All these capabilities are easy to use and their
effectiveness will depend on the situation in question. One of the reasons that trends are
not considered in thesemany different ways is that there can be a considerable overhead
in carrying out the analysis, which is avoided by using these functions. Few, for example,
would consider a detailed trend analysis by hour of the day, ensuring that robust statistical
methods were used and uncertainties calculated. However, it can be useful to consider
how concentrations vary in this way. It may be, for example, that the hours aroundmidday
are dominated by heavy vehicle emissions rather than by cars — so is the trend for a
pollutant different for those hours comparedwith say, hours dominated by other vehicle
types? Similarly, amuchmore focussed trend analysis can be done by considering different
wind direction, as this can help isolate different source influences.
The TheilSen function is typically used to determine trends in pollutant concentrations

over several years. However, it can be used to calculate the trend in any numeric variable.
It calculates monthly mean values from daily, hourly or higher time resolution data, as
well as working directly with monthly means. Whether it is meaningful to calculate trends
over shorter periods of time (e.g. 2 years) depends verymuch on the data. It maywell be
that statistically significant trends can be detected over relatively short periods but it is
anothermatterwhether itmatters. Because seasonal effects can be important formonthly
data, there is the option to deseasonalise the data first. The timeVariation function are
both useful to determine whether there is a seasonal cycle that should be removed.

19.2 Options available
The TheilSen function has the following options:
mydata A data frame containing the field date and at least one other parameter for

which a trend test is required; typically (but not necessarily) a pollutant.
pollutant The parameter for which a trend test is required. Mandatory.
deseason Should the data be de-deasonalized first? If TRUE the function stl is used

(seasonal trend decomposition using loess). Note that if TRUEmissing data
are first linearly interpolated because stl cannot handle missing data.

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can be one
of the built-in types as detailed in cutData e.g. "season", "year", "weekday"
and so on. For example, type = "season"will produce four plots — one for
each season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable,
then those categories/levels will be used directly. This offers great flexibility

131

19 The TheilSen function

for understanding the variation of different variables and how they dcepend
on one another.
Type can be up length two e.g. type = c("season", "weekday")will pro-
duce a 2x2 plot split by season and day of theweek. Note, when two types
are provided the first forms the columns and the second the rows.

avg.time Can be "month" (the default), "season" or "year". Determines the time over
which data should be averaged. Note that for "year", six or more years are
required. For "season" the data are plit up into spring: March, April, May etc.
Note that December is considered as belonging to winter of the following
year.

statistic Statistic used for calculatingmonthly values. Default is "mean", but can also
be "percentile". See timeAverage for more details.

percentile Single percentile value to use if statistic = "percentile" is chosen.
data.thresh Thedata capture threshold touse (whenaggregating thedatausingavg.time.

A value of zeromeans that all available datawill be used in a particular period
regardless if of the number of values available. Conversely, a value of 100will
mean that all data will need to be present for the average to be calculated,
else it is recorded as NA.

alpha For the confidence interval calculations of the slope. The default is 0.05. To
show 99 intervals for the value of the trend, choose alpha = 0.01 etc.

dec.place The number of decimal places to display the trend estimate at. The default is
2.

xlab x-axis label, by default "year".
lab.frac Fraction along the y-axis that the trend information should be printed at,

default 0.99.
lab.cex Size of text for trend information.
x.relation This determines how the x-axis scale is plotted. "same" ensures all panels use

the same scale and "free" will use panel-specfic scales. The latter is a useful
setting when plotting data with very different values.

y.relation This determines how the y-axis scale is plotted. "same" ensures all panels use
the same scale and "free" will use panel-specfic scales. The latter is a useful
setting when plotting data with very different values.

data.col Colour name for the data
line.col Colour name for the slope and uncertainty estimates
text.col Colour name for the slope/uncertainty numeric estimates
cols Predefined colour scheme, currently only enabled for "greyscale".
auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically

try and format pollutant names and units properly e.g. by subscripting the ‘2’
in NO2.

132

19 The TheilSen function

autocor Should autocorrelation be considered in the trend uncertainty estimates?
The default is FALSE. Generally, accounting for autocorrelation increases the
uncertainty of the trend estimate— sometimes by a large amount.

slope.percent Should the slope and the slope uncertainties be expressed as a percent-
age change per year? The default is FALSE and the slope is expressed as an
average units/year change e.g. ppb. Percentage changes can often be confus-
ing and should be clearly defined. Here the percentage change is expressed
as 100 * (C.end/C.start - 1) / (end.year - start.year). Where C.start is the
concentration at the start date and C.end is the concentration at the end
date.
For avg.time = "year" (end.year - start.year) will be the total number of
years - 1. For example, given a concentration in year 1 of 100 units and a
percentage reduction of 5 but the actual time spanwill be 6 years i.e. year 1
is used as a reference year. Things are slightly different for monthly values
e.g. avg.time = "month", which will use the total number of months as a
basis of the time span and is therefore able to deal with partial years. There
can be slight differences in the estimate therefore, depending onwhether
monthly or annual values are considered.

date.breaks Number of major x-axis intervals to use. The function will try and choose a
sensible number of dates/times as well as formatting the date/time appropri-
ately to the range being considered. This does not always work as desired
automatically. The user can therefore increase or decrease the number of
intervals by adjusting the value of date.breaks up or down.

... Other graphical parameters passed onto cutData and lattice:xyplot. For
example, TheilSenpasses theoptionhemisphere = "southern"on tocutData
to provide southern (rather than default northern) hemisphere handling of
type = "season". Similarly, common axis and title labelling options (such
as xlab, ylab, main) are passed to xyplot via quickText to handle routine
formatting.

19.3 Example of use
We first show the use of the TheilSen function by applying it to concentrations of O3. Thefunction is called as shown in Figure 60.
Because the function runs simulations to estimate the uncertainty in the slope, it can

take a little time for all the calculations to finish. These printed results show that in this
case the trend in O3 was +0.38 units (i.e. ppb) per year as an average over the entireperiod. It also shows the 95% confidence intervals in the trend ranged between 0.21 to
0.51 ppb/year. Finally, the significance level in this case is very high; providing very strong
evidence that concentrations of O3 increased over the period. The plot together with thesummary results is shown in Figure 60. Note that if one wanted to display the confidence
intervals in the slope at the 99% confidence intervals, the codewould be Figure 61.

TheilSen(mydata, pollutant = "o3", ylab = "ozone (ppb)", alpha = 0.01)

Sometimes it is useful to consider a subset of data, perhaps by excluding some years.
This is easy with the subset function. The following code calculates trends for years
greater than 1999 i.e. from 2000 onwards.

TheilSen(subset(mydata, format(date, "%Y") > 1999), pollutant = "o3",
ylab = "ozone (ppb)")

133

19 The TheilSen function

TheilSen(mydata, pollutant = "o3", ylab = "ozone (ppb)", deseason = TRUE)

[1] "Taking bootstrap samples. Please wait."

year

O
3

(p
pb

)
4

6

8

10

12

14

1998 1999 2000 2001 2002 2003 2004 2005

0.38 [0.21, 0.51] units/year ***

Figure 60: Trends in ozone at Marylebone Road. The plot shows the deseasonalised
monthly mean concentrations of O3. The solid red line shows the trend es-timate and the dashed red lines show the 95 % confidence intervals for the
trend based on resamplingmethods. The overall trend is shown at the top-left
as 0.38 (ppb) per year and the 95 % confidence intervals in the slope from
0.21–0.51 ppb/year. The ∗ ∗ ∗ show that the trend is significant to the 0.001
level.

It is also possible to calculate trends in many other ways e.g. by wind direction. Consid-
ering how trends vary by wind direction can be extremely useful because the influence of
different sources invariably depends on the direction of the wind. The TheilSen function
splits the wind direction into 8 sectors i.e. N, NE, E etc. The Theil-Sen slopes are then
calculated for each direction in turn. This function takes rather longer to run because
the simulations need to be run eight times in total. Considering concentrations of O3again, the output is shown in Figure 61. Note that this plot is specifically laid out to assist
interpretation, with each panel located at the correct point on the compass. This makes
it easy to see immediately that there is essentially no trend in O3 for southerly windsi.e. where the road itself has the strongest influence. On the other hand the strongest
evidence of increasing O3 are for northerly winds, where the influence of the road is muchless. The reason that there is no trend inO3 for southerly winds is that there is always agreat excess of NO, which reacts withO3 to formNO2. At this particular location it willprobably takemanymore years before O3 concentrations start to increase when the winddirection is southerly. Nevertheless, there will always be some hours that do not have such
high concentrations of NO.
The option slope.percent can be set to express slope estimates as a percentage change

per year. This is useful for comparing slopes for sites with very different concentration
levels and for comparison with emission inventories. The percentage change uses the
concentration at the beginning and endmonths to express themean slope.
The trend,T is defined as:

T [%.yr−1] = 100.

(
CEnd

CStart
− 1

)/
Nyears (7)

where CEnd and CStart are themean concentrations for the end and start date, respect-fully. Nyears is the number of years (or fractions of) the time series spans.

134

19 The TheilSen function

TheilSen(mydata, pollutant = "o3", type = "wd", deseason = TRUE, ylab = "ozone (ppb)")

[1] "Taking bootstrap samples. Please wait."
[1] "Taking bootstrap samples. Please wait."
[1] "Taking bootstrap samples. Please wait."
[1] "Taking bootstrap samples. Please wait."
[1] "Taking bootstrap samples. Please wait."
[1] "Taking bootstrap samples. Please wait."
[1] "Taking bootstrap samples. Please wait."
[1] "Taking bootstrap samples. Please wait."
[1] "Taking bootstrap samples. Please wait."

year

O
3

(p
pb

)

0

5

10

15

20

0.72 [0.47, 1.03] units/year ***
NW

1998 1999 2000 2001 2002 2003 2004 2005

0.9 [0.59, 1.2] units/year ***
N

0.61 [0.14, 1.07] units/year **
NE

0.21 [0.07, 0.36] units/year **
W

0

5

10

15

20

0.26 [0.04, 0.47] units/year *
E

0

5

10

15

20

1998 1999 2000 2001 2002 2003 2004 2005

0.1 [−0.02, 0.21] units/year
SW

0.01 [−0.08, 0.11] units/year
S

1998 1999 2000 2001 2002 2003 2004 2005

0.02 [−0.12, 0.15] units/year
SE

Figure 61: Trends in ozone atMarylebone Road split by eight wind sectors. The TheilSen
function will automatically organise the separate panels by the different com-
pass directions.

135

19 The TheilSen function

TheilSen(mydata, pollutant = "o3", deseason = TRUE, slope.percent = TRUE)

The TheilSen function was written to work with hourly data, which is then averaged
intomonthly or annual data. However, it is realised that users may already have data that
is monthly or annual. The function can therefore accept as input monthly or annual data
directly. However, it is necessary to ensure the date field is in the correct format. Assuming data
in an Excel file in the format dd/mm/YYYY (e.g. 23/11/2008), it is necessary to convert this
to a date format understood by R, as shown below. Similarly, if annual data were available,
get the dates in formats like “2005-01-01”, “2006-01-01”. . . and make sure the date is
again formatted using as.Date. Note that if dates are pre-formatted as YYYY-mm-dd,
then it is sufficient to use as.Datewithout providing any format information because it is
already in the correct format.

mydata$date <- as.Date(mydata$date, format = "%d/%m/%Y")

Finally, the TheilSen function can consider trends at different sites, provided the input
data are correctly formatted. For input, a data framewith three columns is required: date,
pollutant and site. The call would then be, for example:

TheilSen(mydata, pollutant = "no2", type = "site")

19.4 output
The TheilSen function provides lots of output data for further analysis or adding to a
report. To obtain it, it is necessary to read it into a variable:

MKresults <- TheilSen(mydata, pollutant = "o3", deseason = TRUE, type = "wd")

[1] "Taking bootstrap samples. Please wait."
[1] "Taking bootstrap samples. Please wait."
[1] "Taking bootstrap samples. Please wait."
[1] "Taking bootstrap samples. Please wait."
[1] "Taking bootstrap samples. Please wait."
[1] "Taking bootstrap samples. Please wait."
[1] "Taking bootstrap samples. Please wait."
[1] "Taking bootstrap samples. Please wait."
[1] "Taking bootstrap samples. Please wait."

This returns a list of two data frames containing all themonthly mean values and trend
statistics and an aggregated summary. The first 6 lines are shown next:

136

19 The TheilSen function

head(MKresults$data[[1]])

wd date conc a b upper.a upper.b lower.a lower.b
1 E 1998-01-01 5.563 -2.655 0.0007078 -9.447 0.001295 4.364 0.0001145
2 E 1998-02-01 3.016 -2.655 0.0007078 -9.447 0.001295 4.364 0.0001145
3 E 1998-03-01 3.934 -2.655 0.0007078 -9.447 0.001295 4.364 0.0001145
4 E 1998-04-01 4.107 -2.655 0.0007078 -9.447 0.001295 4.364 0.0001145
5 E 1998-05-01 2.215 -2.655 0.0007078 -9.447 0.001295 4.364 0.0001145
6 E 1998-06-01 -1.541 -2.655 0.0007078 -9.447 0.001295 4.364 0.0001145
p p.stars slope intercept intercept.lower intercept.upper lower
1 0.01669 * 0.2583 -2.655 4.364 -9.447 0.04178
2 0.01669 * 0.2583 -2.655 4.364 -9.447 0.04178
3 0.01669 * 0.2583 -2.655 4.364 -9.447 0.04178
4 0.01669 * 0.2583 -2.655 4.364 -9.447 0.04178
5 0.01669 * 0.2583 -2.655 4.364 -9.447 0.04178
6 0.01669 * 0.2583 -2.655 4.364 -9.447 0.04178
upper slope.percent lower.percent upper.percent
1 0.4728 5.637 0.7549 12.44
2 0.4728 5.637 0.7549 12.44
3 0.4728 5.637 0.7549 12.44
4 0.4728 5.637 0.7549 12.44
5 0.4728 5.637 0.7549 12.44
6 0.4728 5.637 0.7549 12.44

Often only the trend statistics are required and not all themonthly values. These can be
obtained by:

MKresults$data[[2]]

wd p.stars conc a b upper.a upper.b lower.a lower.b
1 E * 5.993 -2.655 7.078e-04 -9.447 0.0012953 4.364 1.145e-04
2 N *** 9.795 -19.025 2.471e-03 -28.872 0.0032918 -9.275 1.612e-03
3 NE ** 9.696 -10.455 1.682e-03 -24.645 0.0029364 4.392 3.866e-04
4 NW *** 9.760 -13.351 1.975e-03 -23.034 0.0028188 -5.619 1.281e-03
5 S 5.048 4.335 3.771e-05 1.307 0.0003018 7.267 -2.161e-04
6 SE 5.793 5.215 4.156e-05 1.107 0.0004075 9.640 -3.337e-04
7 SW 4.756 1.586 2.647e-04 -1.891 0.0005795 5.368 -5.774e-05
8 W ** 5.621 -1.155 5.715e-04 -6.030 0.0009899 2.988 2.038e-04
9 <NA> ** 9.607 -21.588 2.383e-03 -40.757 0.0040540 -3.135 7.195e-04
p slope intercept intercept.lower intercept.upper lower upper
1 0.016694 0.25833 -2.655 4.364 -9.447 0.04178 0.4728
2 0.000000 0.90194 -19.025 -9.275 -28.872 0.58837 1.2015
3 0.006678 0.61389 -10.455 4.392 -24.645 0.14111 1.0718
4 0.000000 0.72082 -13.351 -5.619 -23.034 0.46746 1.0289
5 0.811352 0.01376 4.335 7.267 1.307 -0.07886 0.1102
6 0.868114 0.01517 5.215 9.640 1.107 -0.12181 0.1487
7 0.110184 0.09660 1.586 5.368 -1.891 -0.02108 0.2115
8 0.003339 0.20860 -1.155 2.988 -6.030 0.07437 0.3613
9 0.003339 0.86992 -21.588 -3.135 -40.757 0.26263 1.4797
slope.percent lower.percent upper.percent
1 5.6368 0.7549 12.443
2 14.4382 8.1602 25.065
3 9.0999 1.6908 19.899
4 10.5287 6.2506 17.757
5 0.2915 -1.5595 2.508
6 0.2690 -1.9564 2.820
7 2.2501 -0.4412 5.242
8 4.4478 1.4664 8.826
9 29.7194 6.1559 156.859

In the results above the “lower” and “upper” fields provide the 95% (or chosen con-
fidence interval using the alpha option) of the trend and “slope” is the trend estimate
expressed in units/year.

137

20 The smoothTrend function

20 The smoothTrend function
20.1 Purpose

see also
TheilSen
timePlot

The smoothTrend function calculates smooth trends in themonthly mean concentrations
of pollutants. In its basic use it will generate a plot of monthly concentrations and fit a
smooth line to thedata and show the95%confidence intervals of thefit. The smooth line is
essentially determined using Generalized AdditiveModelling using the mgcv package. This
package provides a comprehensive and powerful set ofmethods formodelling data. In this
case, however, themodel is a relationship between time and pollutant concentration i.e. a
trend. One of the principal advantages of this approach is that the amount of smoothness
in the trend is optimised in the sense that it is neither too smooth (therefore missing
important features) nor too variable (perhaps fitting ‘noise’ rather than real effects). Some
background information on the use of this approach in an air quality setting can be found
in Carslaw et al. (2007).
Appendix C considers smooth trends in more detail and considers how different models

can be developed that can be quite sophisticated. Readers should consider this section if
they are considering trend analysis in more depth.
The user can select to deseasonalise the data first to provide a clearer indication of

the overall trend on a monthly basis. The data are deseasonalised using the The stl
function. The user may also select to use bootstrap simulations to provide an alternative
method of estimating the uncertainties in the trend. In addition, the simulated estimates
of uncertainty can account for autocorrelation in the residuals using a block bootstrap
approach.

20.2 Options available
The smoothTrend function has the following options:
mydata A data frame containing the field date and at least one other parameter for

which a trend test is required; typically (but not necessarily) a pollutant.
pollutant The parameter for which a trend test is required. Mandatory.
deseason Should the data be de-deasonalized first? If TRUE the function stl is used

(seasonal trend decomposition using loess). Note that if TRUEmissing data
are first linearly interpolated because stl cannot handle missing data.

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can be one
of the built-in types as detailed in cutData e.g. "season", "year", "weekday"
and so on. For example, type = "season"will produce four plots — one for
each season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable,
then those categories/levels will be used directly. This offers great flexibility
for understanding the variation of different variables and how they depend
on one another.
Type can be up length two e.g. type = c("season", "weekday")will pro-
duce a 2x2 plot split by season and day of theweek. Note, when two types
are provided the first forms the columns and the second the rows.

138

20 The smoothTrend function

statistic Statistic used for calculatingmonthly values. Default is "mean", but can also
be "percentile". See timeAverage for more details.

avg.time Can be "month" (the default), "season" or "year". Determines the time over
which data should be averaged. Note that for "year", six or more years are
required. For "season" the data are plit up into spring: March, April, May etc.
Note that December is considered as belonging to winter of the following
year.

percentile Percentile value(s) to use if statistic = "percentile" is chosen. Can be a
vector of numbers e.g. percentile = c(5, 50, 95)will plot the 5th, 50th
and 95th percentile values together on the same plot.

data.thresh Thedata capture threshold touse (whenaggregating thedatausingavg.time.
A value of zeromeans that all available datawill be used in a particular period
regardless if of the number of values available. Conversely, a value of 100will
mean that all data will need to be present for the average to be calculated,
else it is recorded as NA. Not used if avg.time = "default".

simulate Should simulations be carried out to determine theMann-Kendall tau and
p-value. The default is FALSE. If TRUE, bootstrap simulations are undertaken,
which also account for autocorrelation.

n Number of bootstrap simulations if simulate = TRUE.
autocor Should autocorrelation be considered in the trend uncertainty estimates?

The default is FALSE. Generally, accounting for autocorrelation increases the
uncertainty of the trend estimate sometimes by a large amount.

cols Colours touse. Canbeavectorof colours e.g. cols = c("black", "green")
or pre-defined openair colours — see openColours for more details.

xlab x-axis label, by default "year".
y.relation This determines how the y-axis scale is plotted. "same" ensures all panels use

the same scale and "free" will use panel-specfic scales. The latter is a useful
setting when plotting data with very different values.

key.columns Number of columns used if a key is drawnwhen using the option statistic
= "percentile".

ci Should confidence intervals be plotted? The default is FALSE.
alpha The alpha transparency of shaded confidence intervals - if plotted. A value

of 0 is fully transparent and 1 is fully opaque.
date.breaks Number of major x-axis intervals to use. The function will try and choose a

sensible number of dates/times as well as formatting the date/time appropri-
ately to the range being considered. This does not always work as desired
automatically. The user can therefore increase or decrease the number of
intervals by adjusting the value of date.breaks up or down.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically
try and format pollutant names and units properly e.g. by subscripting the ‘2’
in NO2.

139

20 The smoothTrend function

... Other graphical parameters are passed onto cutData and lattice:xyplot.
For example, smoothTrend passes the option hemisphere = "southern" on
to cutData to provide southern (rather than default northern) hemisphere
handling of type = "season". Similarly, common graphical arguments, such
as xlim and ylim for plotting ranges and pch and cex for plot symbol type and
size, are passed on xyplot, although some localmodificationsmay be applied
by openair. For example, axis and title labelling options (such as xlab, ylab
and main) are passed to xyplot via quickText to handle routine formatting.
One special case here is thatmany graphical parameters can be vectorswhen
used with statistic = "percentile" and a vector of percentile values,
see examples below.

20.3 Example of use
Weapply the function to concentrations of O3 andNO2 using the code below. The firstplot shows the smooth trend in rawO3 concentrations, which shows a very clear seasonalcycle. By removing the seasonal cycle of O3, a better indication of the trend is given,shown in the second plot. Removing the seasonal cycle is more effective for pollutants
(or locations) where the seasonal cycle is stronger e.g. for ozone and background sites.
Figure Figure 62 shows the results of the simulations for NO2 without the seasonal cycleremoved. It is clear from this plot that there is little evidence of a seasonal cycle. The
principal advantage of the smoothing approach compared with theMann-Kendall method
is also clearly shown in this plot. Concentrations of NO2 first decrease, then increasestrongly. The trend is therefore not monotonic, violating theMann-Kendall assumptions.
Finally, the last plot shows the effects of first deaseasonalising the data: in this case with
little effect.
The smoothTrend function sharemany of the functionalities of the TheilSen function.

Figure 63 shows the result of applying this function toO3 concentrations. The code thatproduced Figure 63was:
The smoothTrend function can easily be used to gain a large amount of information on

trends easily. For example, how do trends in NO2, O3 and PM10 vary by season andwindsector. There are 8 wind sectors and four seasons i.e. 32 plots. In Figure 64 all three
pollutants are chosen and two types (season and wind direction). We also reduce the
number of axis labels and the line to improve clarity. There are numerous combinations
of analyses that could be produced here and it is very easy to explore the data in a wide
number of ways.

140

20 The smoothTrend function

smoothTrend(mydata, pollutant = "o3", ylab = "concentration (ppb)", main = "monthly mean
o3")

smoothTrend(mydata, pollutant = "o3", deseason = TRUE, ylab = "concentration (ppb)",
main = "monthly mean deseasonalised o3")

smoothTrend(mydata, pollutant = "no2", simulate = TRUE, ylab = "concentration (ppb)",
main = "monthly mean no2 (bootstrap uncertainties)")

[1] "Taking bootstrap samples. Please wait..."

smoothTrend(mydata, pollutant = "no2", deseason = TRUE, simulate = TRUE,
ylab = "concentration (ppb)", main = "monthly mean deseasonalised no2 (bootstrap

uncertainties)")

[1] "Taking bootstrap samples. Please wait..."

monthly mean O3

year

co
nc

en
tr

at
io

n
(p

pb
)

5

10

15

1998 1999 2000 2001 2002 2003 2004 2005

monthly mean deseasonalised O3

year

co
nc

en
tr

at
io

n
(p

pb
)

4

6

8

10

12

14

1998 1999 2000 2001 2002 2003 2004 2005

monthly mean NO2 (bootstrap uncertainties)

year

co
nc

en
tr

at
io

n
(p

pb
)

40

50

60

1998 1999 2000 2001 2002 2003 2004 2005

monthly mean deseasonalised NO2 (bootstrap uncertainties)

year

co
nc

en
tr

at
io

n
(p

pb
)

40

50

60

70

1998 1999 2000 2001 2002 2003 2004 2005

Figure 62: Examples of the smoothTrend function applied toMarylebone Road

141

20 The smoothTrend function

smoothTrend(mydata, pollutant = "o3", deseason = TRUE, type = "wd")

year

O
3

0

5

10

15

20

NW

1998 1999 2000 2001 2002 2003 2004 2005

N NE

W

0

5

10

15

20

E

0

5

10

15

20

1998 1999 2000 2001 2002 2003 2004 2005

SW S

1998 1999 2000 2001 2002 2003 2004 2005

SE

Figure 63: Trends in O3 using the smoothTrend.wd function applied toMarylebone Road.The shading shows the estimated 95 % confidence intervals. This plot can
usefully be comparedwith Figure 61.

142

20 The smoothTrend function

smoothTrend(mydata, pollutant = c("no2", "pm10", "o3"), type = c("wd",
"season"), date.breaks = 3, lty = 0)

year

N
O

2,
 P

M
10

, O
3

0

20

40

60

80

100

N

sp
rin

g
(M

A
M

)

1998 2000 2002 2004

NE

sp
rin

g
(M

A
M

)

E

sp
rin

g
(M

A
M

)

1998 2000 2002 2004

SE

sp
rin

g
(M

A
M

)

S

sp
rin

g
(M

A
M

)

1998 2000 2002 2004

SW

sp
rin

g
(M

A
M

)

W

sp
rin

g
(M

A
M

)

1998 2000 2002 2004

NW

sp
rin

g
(M

A
M

)

N

su
m

m
er

 (
JJ

A
)

NE

su
m

m
er

 (
JJ

A
)

E

su
m

m
er

 (
JJ

A
)

SE

su
m

m
er

 (
JJ

A
)

S

su
m

m
er

 (
JJ

A
)

SW

su
m

m
er

 (
JJ

A
)

W

su
m

m
er

 (
JJ

A
)

0

20

40

60

80

100

NW

su
m

m
er

 (
JJ

A
)

0

20

40

60

80

100

N

au
tu

m
n

(S
O

N
)

NE

au
tu

m
n

(S
O

N
)

E

au
tu

m
n

(S
O

N
)

SE

au
tu

m
n

(S
O

N
)

S

au
tu

m
n

(S
O

N
)

SW

au
tu

m
n

(S
O

N
)

W
au

tu
m

n
(S

O
N

)
NW

au
tu

m
n

(S
O

N
)

1998 2000 2002 2004

N

w
in

te
r

(D
JF

)

NE

w
in

te
r

(D
JF

)

1998 2000 2002 2004

E

w
in

te
r

(D
JF

)

SE

w
in

te
r

(D
JF

)

1998 2000 2002 2004

S

w
in

te
r

(D
JF

)

SW

w
in

te
r

(D
JF

)

1998 2000 2002 2004

W

w
in

te
r

(D
JF

)

0

20

40

60

80

100

NW

w
in

te
r

(D
JF

)

NO2 PM10 O3

Figure 64: The smoothTrend function applied to three pollutants, split by wind sector and
season.

143

21 The timeVariation function

21 The timeVariation function
21.1 Purpose

see also
linearRelation In air pollution, the variation of a pollutant by time of day and day ofweek can reveal useful

information concerning the likely sources. For example, road vehicle emissions tend to
follow very regular patterns both on a daily and weekly basis. By contrast some industrial
emissions or pollutants from natural sources (e.g. sea salt aerosol) may well have very
different patterns.
The timeVariation function produces four plots: day of the week variation, mean hour

of day variation and a combined hour of day – day of week plot and amonthly plot. Also
shown on the plots is the 95% confidence interval in themean. These uncertainty limits
can be helpful when trying to determinewhether one candidate source is different from
another. The uncertainty intervals are calculated through bootstrap re-sampling, which
will provide better estimates than the application of assumptions based on normality,
particularly when there are few data available. The function can consider one or two
input variables. In addition, there is the option of “normalising” concentrations (or other
quantities). Normalising is very useful for comparing the patterns of two different pollut-
ants, which often cover very different ranges in concentration. Normalising is achieved
by dividing the concentration of a pollutant by its mean value. Note also that any other
variables besides pollutant concentrations can be considered e.g. meteorological or traffic
data.
There is also an option differencewhich is very useful for considering the difference in

two time series and how they vary over different temporal resolutions. Again, bootstrap
re-sampling methods are used to estimate the uncertainty of the difference in twomeans.

Averaging wind direction
Care has been taken to ensure that wind direction (wd) is vector-averaged.
Less obvious though is the uncertainty in wind direction. A pragmatic ap-
proach has been adopted here that considers how wind direction changes.
For example, consider the following wind directions: 10, 10, 10, 180, 180,
180°. The standard deviation of these numbers is 93°. However, what actu-
ally occurs is the wind direction is constant at 10° then switches to 180°.
In terms of changes there is a sequence of numbers: 0, 0, 170, 0, 0 with a
standard deviation of 76°. We use the latter method as a basis of calculating
the 95% confidence intervals in the mean.
There are also problems with simple averaging—for example, what is the
average of 20 and 200°. It can’t be known. In some situations where the
wind direction is bi-modal with differences around 180°, the mean can be
“unstable”. For example, wind that is funnelled along a valley forcing it to
be either easterly or westerly. Consider for example the mean of 0° and
179° (89.5°), but a small change in wind direction to 181° gives a mean of
270.5°. Some care should be exercised therefore when averaging wind direc-
tion. It is always a good idea to use the windRose function with type set to
“month” or “hour”.
The timeVariation function is probably one of themost useful functions that can be

used for the analysis of air pollution. Here are a few uses/advantages:
• Variations in time are one of themost useful ways of characterising air pollution for

144

21 The timeVariation function

a very wide range of pollutants including local urban pollutants and tropospheric
background concentrations of ozone and the like.

• The function works well in conjunction with other functions such as polarPlot,
where the latter may identify conditions of interest (say a wind speed/direction
range). By sub-setting for those conditions in timeVariation the temporal charac-
teristics of a particular source could be characterised and perhaps contrasted with
another subset of conditions.

• The function can be used to compare a wide range of variables, if available. Sugges-
tions includemeteorological e.g. boundary layer height and traffic flows.

• The function can be used for comparing pollutants over different sites. See §(31.7)
for examples of how to do this.

• The function can be used to compare one part of a time series with another. This is
often a very powerful thing to do, particularly if concentrations are normalised. For
example, there is often interest in knowing how diurnal/weekday/seasonal patterns
vary with time. If a pollutant showed signs of an increase in recent years, then
splitting the data set and comparing each part together can provide information on
what is driving the change. Is there, for example, evidence that morning rush hour
concentrations have becomemore important, or Sundays have become relatively
more important? An example is given below using the splitByDate function.

• timeVariation can be used to consider the differences between two time series,
which will havemultiple benefits. For example, for model evaluation it can be very
revealing to consider the difference between observations andmodelled values over
different time scales. Considering such differences can help reveal the character
and some of the reasons for why amodel departs from reality.

21.2 Options available
The timeVariation function has the following options:
mydata A data frame of hourly (or higher temporal resolution data). Must include a

date field and at least one variable to plot.
pollutant Name of variable to plot. Two or more pollutants can be plotted, in which

case a form like pollutant = c("nox", "co") should be used.
local.time Should the results be calculated in local time? The default is FALSE. Emissions

activity tends to occur at local time e.g. rush hour is at 8 am every day. When
the clocks go forward in spring, the emissions are effectively released into
the atmosphere at BST - 1 hour during the summer. When plotting diurnal
profiles, this has the effect of "smearing-out" the concentrations. Sometimes,
a better approach is to express time as local time, which here is defined as
BST (British Summer Time). This correction tends to produce better-defined
diurnal profiles of concentration (or other variables) and allows a better
comparison to be made with emissions/activity data. If set to FALSE then
GMT is used.

normalise Should variables be normalised? The default is FALSE. If TRUE then the vari-
able(s) are divided by their mean values. This helps to compare the shape of
the diurnal trends for variables on very different scales.

145

21 The timeVariation function

xlab x-axis label; one for each sub-plot.
name.pol Names to be given to the pollutant(s). This is useful if youwant to give a fuller

description of the variables, maybe also including subscripts etc.
type type determines how the data are split i.e. conditioned, and then plotted.

The default is will produce a single plot using the entire data. Type can be one
of the built-in types as detailed in cutData e.g. "season", "year", "weekday"
and so on. For example, type = "season"will produce four plots — one for
each season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable,
then those categories/levels will be used directly. This offers great flexibility
for understanding the variation of different variables and how they depend
on one another.
Only one type is allowed intimeVariation.

group This sets the grouping variable to be used. For example, if a data frame had
a column site setting group = "site" will plot all sites together in each
panel. See examples below.

difference If two pollutants are chosen then setting difference = TRUEwill also plot
thedifference inmeansbetween the twovariables aspollutant[2] - pollutant[1].
Bootstrap 95% confidence intervals of the difference inmeans are also cal-
culated. A horizontal dashed line is shown at y = 0.

B Number of bootstrap replicates to use. Can be useful to reduce this value
when there are a large number of observations available to increase the
speed of the calculations without affecting the 95 interval calculations by
much.

ci Should confidence intervals be shown? The default is TRUE. Setting this to
FALSE can be useful if multiple pollutants are chosen where over-lapping
confidence intervals can over complicate plots.

cols Colours to be used for plotting. Options include "default", "increment", "heat",
"spectral", "hue" (default) and user defined (seemanual for more details).

key By default timeVariation produces four plots on one page. While it is useful
to see these plots together, it is sometimes necessary just to use one for a
report. If key is TRUE, a key is added to all plots allowing the extraction of a
single plotwith key. See below for an example.

key.columns Number of columns to be used in the key. With many pollutants a single
column canmake to key toowide. The user can thus choose to use several
columns by setting columns to be less than the number of pollutants.

start.day What day of the week should the plots start on? The user can change the
start day by supplying an integer between 0 and 6. Sunday = 0,Monday = 1,
. . .For example to start the weekday plots on a Saturday, choose start.day
= 6.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically
try and format pollutant names and units properly e.g. by subscripting the ‘2’
in NO2.

146

21 The timeVariation function

alpha The alpha transparency used for plotting confidence intervals. 0 is fully
transparent and 1 is opaque. The default is 0.4

... Other graphical parameters passed onto lattice:xyplot and cutData. For
example, in the case of cutData the option hemisphere = "southern".

21.3 Example of use
We apply the timeVariation function to PM10 concentrations and take the opportunityto filter the data tomaximise the signal from the road. The polarPlot function described
in (§15) is very useful in this respect in highlighting the conditions under which different
sources have their greatest impact. A subset of data is used filtering for wind speeds > 3
m s−1 andwind directions from 100–270 degrees. The code used is:
The results are shown in Figure 65. The plot shown at the top-left shows the diurnal

variation of concentrations for all days. It shows for example that PM10 concentrationstend to peak around 9 am. The shading shows the 95% confidence intervals of themean.
The plot at the top-right shows how PM10 concentrations vary by day of the week. Herethere is strong evidence that PM10 is much lower at the weekends and that there is asignificant difference compared with weekdays. It also shows that concentrations tend to
increase during the weekdays. Finally, the plot at the bottom shows both sets of informa-
tion together to provide an overview of how concentrations vary.timeVariation

is also very
useful for

other
variables such
as traffic and
meteorolo-

gical
data

Note that the plot need not just consider pollutant concentrations. Other useful vari-
ables (if available) aremeteorological and traffic flow or speed data. Often, the combina-
tion of several sets of data can be very revealing.
The subset function is extremely useful in this respect. For example, if it were believed

that a source had an effect under specific conditions; they can be isolated with the subset
function. It is also useful if it is suspected that two or more sources are important that
they can be isolated to some degree and compared. This is where the uncertainty intervals
help – they provide an indication whether the behaviour of one source differs significantly
from another.
Figure 66 shows the function applied to concentrations of NOx , CO, NO2 andO3 con-centrations. In this case the concentrations have been normalised. The plot clearly shows

the markedly different temporal trends in concentration. For CO, there is a very pro-
nounced increase in concentrations during the peak pm rush hour. The other important
difference is on Sundays when CO concentrations are relatively much higher thanNOx .This is because flows of cars (mostly petrol) do not change that much by day of the week,
but flows of vans and HGVs (diesel vehicles) are much less on Sundays. Note, however,
that themonthly trend is very similar in each case—which indicates very similar source
origins. Taken together, the plots highlight that traffic emissions dominate this site for CO
andNOx , but there are important difference in how these emissions vary by hour of dayand day of week.
Also shown in the very different behaviour of O3. Because O3 reacts with NO, con-centrations of NOx andO3 tend to be anti-correlated. Note also the clear peak in O3 inApril/May, which is due to higher northern hemispheric background concentrations in the

spring. Even at a busy roadside site in central London this influence is clear to see.
Another example is splitting the data set by time. We use the splitByDate function to

divide up the data into dates before January 2003 and after January 2003. This time the
option difference is used to highlight howNO2 concentrations have changed over thesetwo periods. The results are shown in Figure 67. There is some indication in this plot that
data after 2003 seem to showmore of a double peak in the diurnal plots; particularly in the
morning rush hour. Also, the difference line does more clearly highlight a more substantial
change over weekdays andweekends. Given that cars are approximately constant at this

147

21 The timeVariation function

timeVariation(subset(mydata, ws > 3 & wd > 100 & wd < 270), pollutant = "pm10",
ylab = "pm10 (ug/m3)")

hour

P
M

10
 (

µg
 m

−3
)

20

30

40

50

60

70

0 6 12 18 23

Monday

0 6 12 18 23

Tuesday

0 6 12 18 23

Wednesday

0 6 12 18 23

Thursday

0 6 12 18 23

Friday

0 6 12 18 23

Saturday

0 6 12 18 23

Sunday

PM10

hour

P
M

10
 (

µg
 m

−3
)

20

25

30

35

40

45

50

0 6 12 18 23

month

P
M

10
 (

µg
 m

−3
)

35

40

45

50

J F M A M J J A S O N D

weekday

P
M

10
 (

µg
 m

−3
)

30

35

40

Mon Tue Wed Thu Fri Sat Sun

Figure 65: Example plot using the timeVariation function to plot PM10 concentrationsatMarylebone Road.

timeVariation(mydata, pollutant = c("nox", "co", "no2", "o3"), normalise = TRUE)

hour

no
rm

al
is

ed
 le

ve
l

0.5

1.0

1.5

2.0

0 6 12 18 23

Monday

0 6 12 18 23

Tuesday

0 6 12 18 23

Wednesday

0 6 12 18 23

Thursday

0 6 12 18 23

Friday

0 6 12 18 23

Saturday

0 6 12 18 23

Sunday

NOx CO NO2 O3

hour

no
rm

al
is

ed
 le

ve
l

0.6

0.8

1.0

1.2

1.4

0 6 12 18 23

month

no
rm

al
is

ed
 le

ve
l

0.6

0.8

1.0

1.2

1.4

1.6

J F M A M J J A S O N D

weekday

no
rm

al
is

ed
 le

ve
l

0.8

0.9

1.0

1.1

1.2

1.3

Mon Tue Wed Thu Fri Sat Sun

Figure 66: Example plot using the timeVariation function to plot NOx , CO, NO2 andO3 concentrations at Marylebone Road. In this plot, the concentrations arenormalised.

148

21 The timeVariation function

split data into two periods (see Utlities section for more details)
mydata <- splitByDate(mydata, dates = "1/1/2003", labels = c("before Jan. 2003",

"After Jan. 2003"))

timeVariation(mydata, pollutant = "no2", group = "split.by", difference = TRUE)

hour

N
O

2

0

20

40

60

80

0 6 12 18 23

Monday

0 6 12 18 23

Tuesday

0 6 12 18 23

Wednesday

0 6 12 18 23

Thursday

0 6 12 18 23

Friday

0 6 12 18 23

Saturday

0 6 12 18 23

Sunday

before Jan. 2003 After Jan. 2003 After Jan. 2003 − before Jan. 2003

hour

N
O

2

20

40

60

0 6 12 18 23

month

N
O

2

0

10

20

30

40

50

60

J F M A M J J A S O N D

weekday

N
O

2

10

20

30

40

50

60

Mon Tue Wed Thu Fri Sat Sun

Figure 67: Example plot using the timeVariation function to plot NO2 concentrations atMarylebone Road. In this plot, the concentrations are shown before and after
January 2003.

site each day, the changemay indicate a change in vehicle emissions from other vehicle
types. Given that it is known that primary NO2 emissions are known to have increasedsharply from thebeginning of 2003onwards, this perhaps provides clues as to the principal
cause.
In the next example it is shown how to compare one subset of data of interest with

another. Again, there can bemany reasons for wanting to do this and perhaps the data set
atMarylebone Road is not themost interesting to consider. Nevertheless, the code below
shows how to approach such a problem. The scenario would be that one is interested in a
specific set of conditions and it would be useful to compare that set, with another set. A
good example would be from an analysis using the polarPlot function where a “feature”
of interest has been identified—maybe an indication of a different source. But does this
potentially different source behave in a different way in terms of temporal variation? If it
does, thenmaybe that provides evidence to support that it is a different source. In a wider
context, this approach could be used in many different ways depending on available data.
A good example is the analysis of model output where many diagnostic meteorological
data are available. This is an area that will be developed.
The approach here is tofirstmake a newvariable called “feature” andfill it with the value

“other”. A subset of data is defined and the associated locations in the data frame identified.
The subset of data is then used to update the “feature” field with a new description. This
approach could be extended to some quite complex situations.
There are a couple of things to note in Figure 66. There seems to be evidence that for

easterly winds > 4m s−1 that concentrations of SO2 are lower at night. Also, there is some

149

21 The timeVariation function

make a field called 'site' and fill: make all values = 'other'
mydata$feature <- "other"

now find which indexes correspond to easterly conditions > 4m/s ws
id <- which(with(mydata, ws > 4 & wd > 0 & wd <= 180))

use the ids to update the site column there are now two values in site:
'other' and 'easterly'
mydata$feature[id] <- "easterly"
timeVariation(mydata, pollutant = "so2", group = "feature", ylab = "so2 (ppb)",

difference = TRUE)

hour

S
O

2
(p

pb
)

−2

0

2

4

6

8

0 6 12 18 23

Monday

0 6 12 18 23

Tuesday

0 6 12 18 23

Wednesday

0 6 12 18 23

Thursday

0 6 12 18 23

Friday

0 6 12 18 23

Saturday

0 6 12 18 23

Sunday

easterly other other − easterly

hour

S
O

2
(p

pb
)

0

2

4

6

0 6 12 18 23

month

S
O

2
(p

pb
)

−2

0

2

4

6

J F M A M J J A S O N D

weekday

S
O

2
(p

pb
)

0

2

4

6

Mon Tue Wed Thu Fri Sat Sun

Figure 68: Example plot using the timeVariation function to plot SO2 concentrations atMarylebone Road. In this plot, the concentrations are shown for a subset of
easterly conditions and everything else. Note that the uncertainty in themean
values for easterly winds is greater than “other”. This is mostly because the
sample size is much lower for “easterly” comparedwith “other”.

evidence that concentrations for these conditions are also lower at weekends. Thismight
reflect that SO2 concentrations for these conditions tend to be dominated by tall stackemissions that have different activities to road transport sources. This technique will be
returned to with different data sets in future.

21.4 Output
The timeVariation function produces several outputs that can be used for further ana-
lysis or plotting. It is necessary to read the output into a variable for further processing.
The code below shows the different objects that are returned and the code shows how to
access them.

150

22 The scatterPlot function

myOutput <- timeVariation(mydata, pollutant = "so2")
show the first part of the day/hour variation note that value = mean, and
Upper/Lower the 95% confid. intervals
head(myOutput$data$day.hour)

variable weekday hour default Mean Lower Upper
1 so2 Monday 0 01 January 1998 to 23 June 2005 2.898 2.646 3.224
2 so2 Tuesday 0 01 January 1998 to 23 June 2005 3.146 2.895 3.372
3 so2 Wednesday 0 01 January 1998 to 23 June 2005 3.310 3.034 3.590
4 so2 Thursday 0 01 January 1998 to 23 June 2005 3.177 2.948 3.435
5 so2 Friday 0 01 January 1998 to 23 June 2005 3.581 3.324 3.920
6 so2 Saturday 0 01 January 1998 to 23 June 2005 4.192 3.945 4.480

can make a new data frame of this data e.g.
day.hour <- myOutput$data$day.hour
head(day.hour)

variable weekday hour default Mean Lower Upper
1 so2 Monday 0 01 January 1998 to 23 June 2005 2.898 2.646 3.224
2 so2 Tuesday 0 01 January 1998 to 23 June 2005 3.146 2.895 3.372
3 so2 Wednesday 0 01 January 1998 to 23 June 2005 3.310 3.034 3.590
4 so2 Thursday 0 01 January 1998 to 23 June 2005 3.177 2.948 3.435
5 so2 Friday 0 01 January 1998 to 23 June 2005 3.581 3.324 3.920
6 so2 Saturday 0 01 January 1998 to 23 June 2005 4.192 3.945 4.480

All the numerical results are given by:
myOutput$data$day.hour ## are the weekday and hour results
myOutput$data$hour ## are the diurnal results
myOutput$data$day ## are the weekday results
myOutput$data$month ## are the monthly results

It is also possible to plot the individual plots that make up the (four) plots produced by
timeVariation:

just the diurnal variation
plot(myOutput, subset = "hour")
day and hour
plot(myOutput, subset = "day.hour")
weekday variation
plot(myOutput, subset = "day")
monthly variation
plot(myOutput, subset = "month")

22 The scatterPlot function
22.1 Purpose

Scatter plots are extremely useful and a very commonly used analysis technique for con-
sidering how variables relate to one another. R does of course have many capabilities
for plotting data in this way. However, it can be tricky to add linear relationships, or split
scatter plots by levels of other variables etc. The purpose of the scatterPlot function is
tomake it straightforward to consider how variables are related to one another in a way
consistent with other openair functions. We have added several capabilities that can be
used just by setting different options, some of which are shown below.
• Asmoothfit is automatically added tohelp reveal theunderlying relationshipbetween
two variables together with the estimated 95% confidence intervals of the fit. This

151

22 The scatterPlot function

is in general an extremely useful thing to do because it helps to show the (possibly)
non-linear relationship between variables in a very robust way – or indeed whether
the relationship is linear.

• It is easy to add a linear regression line. The resulting equation is shown on the plot
together with the R2 value.

• For large data sets there is the possibility to ‘bin’ the data using hexagonal binning or
kernel density estimates. This approach is very useful when there is considerable
over-plotting.

• It is easy to show how two variables are related to one another dependent on levels
of a third variable. This capability is very useful for exploring how different variables
depend on one another and can help reveal the underlying important relationships.

• A plot of two variables can be colour-coded by a continuous colour scale of a third
variable.

• It can handle date/time x-axis formats to provide an alternative way of showing time
series, which again can be colour-coded by a third variable.

The scatterPlot function isn’t really specific to atmospheric sciences, in the sameway
as other plots. It is more a function for convenience, written in a style that is consistent
with other openair functions. Nevertheless, along with the timePlot function they do
form an important part of openair because of the usefulness of understanding show
variables relate to one another. Furthermore, there aremany options tomake it easy to
explore data in an interactive waywithout worrying about processing data or formatting
plots.

22.2 Options available
mydata A data frame containing at least two numeric variables to plot.
x Name of the x-variable to plot. Note that x can be a date field or a factor.

For example, x can be one of the openair built in types such as "year" or
"season".

y Name of the numeric y-variable to plot.
z Name of the numeric z-variable to plot for method = "scatter" or method

= "level". Note that for method = "scatter" points will be coloured ac-
cording to a continuous colour scale, whereas for method = "level" the
surface is coloured.

method Methods include"scatter" (conventional scatter plot), "hexbin" (hexagonal
binning using the hexbin package). level for a binned or smooth surface
plot and "density" (2D kernel density estimates).

group The grouping variable to use, if any. Setting this to a variable in the data frame
has the effect of plotting several series in the same panel using different
symbols/colours etc. If set to a variable that is a character or factor, those
categories or factor levels will be used directly. If set to a numeric variable, it
will split that variable in to quantiles.

152

22 The scatterPlot function

avg.time This defines the time period to average to. Can be "sec", "min", "hour", "day",
"DSTday", "week", "month", "quarter" or "year". Formuch increased flexibil-
ity a number can precede these options followed by a space. For example,
a timeAverage of 2 months would be period = "2 month". See function
timeAverage for further details on this. This option se useful as onemethod
by which the number of points plotted is reduced i.e. by choosing a longer
averaging time.

data.thresh Thedata capture threshold touse (whenaggregating thedatausingavg.time.
A value of zeromeans that all available datawill be used in a particular period
regardless if of the number of values available. Conversely, a value of 100will
mean that all data will need to be present for the average to be calculated,
else it is recorded as NA. Not used if avg.time = "default".

statistic The statistic to apply when aggregating the data; default is themean. Can be
one of "mean", "max", "min", "median", "frequency", "sd", "percentile". Note
that "sd" is the standard deviation and "frequency" is the number (frequency)
of valid records in the period. "percentile" is the percentile level (which can
be set using the "percentile" option - see below. Not used if avg.time =
"default".

percentile The percentile level in statistic = "percentile" andwhen aggregating
thedatawithavg.time. Thedefault is 95. Notused ifavg.time = "default".

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can be one
of the built-in types as detailed in cutData e.g. "season", "year", "weekday"
and so on. For example, type = "season"will produce four plots — one for
each season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable,
then those categories/levels will be used directly. This offers great flexibility
for understanding the variation of different variables and how they depend
on one another.
Type can be up length two e.g. type = c("season", "weekday")will pro-
duce a 2x2 plot split by season and day of theweek. Note, when two types
are provided the first forms the columns and the second the rows.

smooth A smooth line is fitted to the data if TRUE; optionally with 95 shown. For
method = "level" a smooth surface will be fitted to binned data.

spline A smooth spline is fitted to the data if TRUE. This is particularly useful when
there are fewer data points or when a connection line between a sequence
of points is required.

linear A linear model is fitted to the data if TRUE; optionally with 95 shown. The
equation of the line and R2 value is also shown.

ci Should the confidence intervals for the smooth/linear fit be shown?
mod.line If TRUE three lines are added to the scatter plot to help informmodel evalu-

ation. The 1:1 line is solid and the 1:0.5 and 1:2 lines are dashed. Together

153

22 The scatterPlot function

these lines help show how close a group of points are to a 1:1 relationship
and also show the points that are within a factor of two (FAC2). Also, for
method = "scatter" (the default) the scales are made to be isometric. In
time, more comprehensivemodel evaluation statistics will be considered.

cols Colours to be used for plotting. Options include "default", "increment", "heat",
"spectral", "hue", "brewer1" and user defined (seemanual for more details).
The same line colour can be set for all pollutant e.g. cols = "black".

plot.type lattice plot type. Can be "p" (points — default), "l" (lines) or "b" (lines and
points).

key Should a key be drawn? The default is TRUE.
key.title The title of the key (if used).
key.columns Number of columns to be used in the key. With many pollutants a single

column canmake to key toowide. The user can thus choose to use several
columns by setting columns to be less than the number of pollutants.

key.position Location where the scale key is to plotted. Allowed arguments currently
include "top", "right", "bottom" and "left"

strip Should a strip be drawn? The default is TRUE.
log.x Should the x-axis appear on a log scale? The default is FALSE. If TRUE awell-

formatted log10 scale is used. This can be useful for checking linearity once
logged.

log.y Should the y-axis appear on a log scale? The default is FALSE. If TRUE awell-
formatted log10 scale is used. This can be useful for checking linearity once
logged.

x.inc The x-interval to be used for binning data when method = "level".
y.inc The y-interval to be used for binning data when method = "level".
y.relation This determines how the y-axis scale is plotted. "same" ensures all panels use

the same scale and "free" will use panel-specfic scales. The latter is a useful
setting when plotting data with very different values.

x.relation This determines how the y-axis scale is plotted. "same" ensures all panels use
the same scale and "free" will use panel-specfic scales. The latter is a useful
setting when plotting data with very different values.

ref.x Add a vertical dashed reference line at this value.
ref.y Add a horizontal dashed reference line at this value.
k Smoothing parameter supplied to gam for fitting a smooth surface when

method = "level".
trans trans is used when continuous = TRUE. Often for a good colour scale with

skewed data it is a good idea to "compress" the scale. If TRUE a square root
transform is used, if FALSE a linear scale is used.

map Should a basemap be drawn? This option is under development.

154

22 The scatterPlot function

data2003 <- selectByDate(mydata, year = 2003)
scatterPlot(data2003, x = "nox", y = "no2")

NOx

N
O

2

0

50

100

150

200

0 200 400 600

Figure 69: Scatter plot of hourly NOx vs. NO2 atMarylebone Road for 2003.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically
try and format pollutant names and units properly e.g. by subscripting the ‘2’
in NO2.

... Other graphical parameters are passed onto cutData and an appropriate
latticeplot function (xyplot, levelplotorhexbinplotdependingonmethod).
For example, scatterPlot passes the option hemisphere = "southern"
on to cutData to provide southern (rather than default northern) hemi-
sphere handling of type = "season". Similarly, for the default case method
= "scatter" common axis and title labelling options (such as xlab, ylab,
main) are passed to xyplot via quickText to handle routine formatting.
Other common graphical parameters, e.g. layout for panel arrangement,
pch for plot symbol and lwd and lty for line width and type, as also available
(see examples below).

22.3 Example of use
Weprovide a few examples of use and as usual, users are directed towards the help pages
(type ?scatterPlot) for more extensive examples.
First we select a subset of data (2003) using the openairselectByDate function and

plot NOx vs. NO2 (Figure 69).Often with several years of data, points are over-plotted and it can be very difficult
to see what the underlying relationship looks like. One very effective method to use in
these situations is to ‘bin’ the data and to colour the intervals by the number of counts of
occurrences in each bin. There are various ways of doing this, but ’hexagonal binning’ is
particularly effective because of the way hexagons can be placed next to one another.13
To use hexagonal binning it will be necessary to install the hexbin package:

install.packages("hexbin")

13In fact it is not possible to have a shapewithmore than 6 sides that can be used to forma a lattice without
gaps.

155

22 The scatterPlot function

scatterPlot(data2003, x = "nox", y = "no2", method = "hexbin")

NOx

N
O

2
0

50

100

150

200

0 200 400 600

Counts

1
1
2
3
4
6
8

11
16
23
33
46
65
93

131
186
264

Figure 70: Scatter plot of hourly NOx vs. NO2 atMarylebone Road using hexagonal bin-ning. The number of occurrences in each bin is colour-coded (not on a linear
scale). It is nowpossible to seewheremost of the data lie and abetter indication
of the relationship betweenNOx andNO2 is revealed.

Now it should be possible tomake the plot by setting themethod option to “hexbin”, as
shown in Figure 70. The benefit of hexagonal binning is that it works equally well with
enormous data sets e.g. several million records. In this case Figure 70 provides a clearer
indication of the relationship between NOx and NO2 than Figure 69 because it revealswheremost of the points lie, which is not apparent from Figure 69.
Sometimes it is useful to consider how the relationship between two variables varies

by levels of a third. In openair this approach is possible by setting the option type. When
type is another numeric variables, four plots are produced for different quantiles of that
variable. We illustrate this point by considering how the relationship betweenNOx andNO2 varieswith different levels ofO3. We also take the opportunity to not plot the smoothline, but plot a linear fit instead and force the layout to be a 2 by 2 grid.
Finally, we showhow toplot a continuous colour scale for a third numeric variable setting

the value of z to the third variable. Figure 72 shows again the relationship betweenNOxandNO2 but this time colour-coded by the concentration of O3. We also take the oppor-tunity to split the data into seasons andweekday/weekendby settingtype = c("season",
"weekend"). There is an enormous amount of information that can be gained from plots
such as this. Differences between weekdays and the weekend can highlight changes in
emission sources, splitting by seasons can show seasonal influences inmeteorology and
background O3 and colouring the data by the concentration of O3 helps to show howO3 concentrations affect NO2 concentrations. For example, consider the summertime-weekday panel where it clearly shows that the higher NO2 concentrations are associatedwith high O3 concentrations. Indeed there are some hours where NO2 is>100 ppb atquite low concentrations of NOx (≈200 ppb). It would also be interesting instead of usingO3 concentrations fromMarylebone Road to useO3 from a background site.Figure 72was very easily produced but contains a huge amount of useful information
showing the relationship betweenNOx andNO2 dependent upon the concentration ofO3, the season and the day of the week. There are of course numerous other plots thatare equally easily produced.
Figure 73 shows that scatterPlot can also handles dates on the x-axis; in this case

shown for SO2 concentrations coloured bywind direction for August 2003.

156

22 The scatterPlot function

scatterPlot(data2003, x = "nox", y = "no2", type = "o3", smooth = FALSE,
linear = TRUE, layout = c(2, 2))

NOx

N
O

2 0

50

100

150

200
NO2=0.2[NOx]+21 R2=0.83

O3 0 to 2

0 200 400 600

NO2=0.24[NOx]+18 R2=0.87

O3 2 to 4

0 200 400 600

NO2=0.29[NOx]+14 R2=0.89

O3 4 to 11

0

50

100

150

200
NO2=0.4[NOx]+7.3 R2=0.9

O3 11 to 70

Figure 71: Scatter plot of hourly NOx vs. NO2 atMarylebone Road by different levels ofO3.

scatterPlot(data2003, x = "nox", y = "no2", z = "o3", type = c("season",
"weekend"))

NOx vs. NO2 by levels of O3

NOx

N
O

2 0

50

100

150

200

spring (MAM)

w
ee

kd
ay

0 200 400 600

summer (JJA)

w
ee

kd
ay

autumn (SON)

w
ee

kd
ay

0 200 400 600

winter (DJF)

w
ee

kd
ay

0 200 400 600

spring (MAM)

w
ee

ke
nd

summer (JJA)

w
ee

ke
nd

0 200 400 600

autumn (SON)

w
ee

ke
nd

0

50

100

150

200
winter (DJF)

w
ee

ke
nd

0

5

10

15

20

25
30
35
40
45
50
55
60
65
70

Figure 72: Scatter plot of hourly NOx vs. NO2 atMarylebone Road by different levels ofO3 split by season andweekday-weekend.

157

23 The linearRelation function

scatterPlot(selectByDate(data2003, month = 8), x = "date", y = "so2",
z = "wd", trans = FALSE)

date vs. SO2 by levels of wind dir.

date

S
O

2

0

5

10

15

20

25

Aug 04 Aug 11 Aug 18 Aug 25 Sep 01

0

50

100

150

200

250

300

350

Figure 73: Scatter plot of date vs. SO2 at Marylebone Road by different levels of winddirection for August 2003.

23 The linearRelation function
see also

timeVariation
calcFno2

This function considers linear relationships between two pollutants. The relationships are
calculated on different times bases using a linearmodel. The slope and 95% confidence
interval in slope relationships by time unit are plotted in several different ways. The
function is particularly useful when considering whether relationships are consistent with
emissions inventories.
The relationships between pollutants can yield some very useful information about

source emissions and how they change. A scatter plot between two pollutants is the usual
way to investigate the relationship. A linear regression is useful to test the strength of
the relationship. However, considerably more information can be gleaned by considering
different time periods, such as how the relationship between two pollutants vary over
time, by day of the week, diurnally and so on. The linearRelation function does just that
– it fits a linear relationship between two pollutants over a wide range of time periods
determined by period.
Consider the relationship betweenNOx andNO2. It is best to think of the relationshipas:

y = m.x + c (8)
i.e.

NO2 = m.NOx + c (9)
In which case x corresponds to NOx and y corresponds to NO2. The plots show thegradient,m in what ever units the original data were in. For comparison with emission

inventories it makes sense to have all the units expressed as mass. By contrast, oxidant
slopes are best calculated in volume units e.g. ppb.
linearRelation function is particularly useful if background concentrations are first

removed from roadside concentrations, as the increment will relate more directly with
changes in emissions. In this respect, using linearRelation can provide valuable inform-

158

23 The linearRelation function

ation on how emissions may have changed over time, by hour of the day etc. Using the
function in this waywill require users to do some basic manipulation with their data first.
If a data frame is supplied that contains nox, no2 and o3, the y can be chosen as y =

"ox". In function will therefore consider total oxidant slope (sum of NO2 +O3), which canprovide valuable information on likely vehicle primary NO emissions. Note, however, that
most roadside sites do not have ozonemeasurements and calcFno2 is the alternative.

23.1 Options available
mydata A data frameminimally containing date and two pollutants.
x First pollutant thatwhen plottedwould appear on the x-axis of a relationship

e.g. x = "nox".
y Second pollutant that when plotted would appear on the y-axis of a relation-

ship e.g. y = "pm10".
period A range of different time periods can be analysed. "monthly" will plot a

monthly time series and "weekly" a weekly time series of the relationship
between x and y. "hour" will show the diurnal relationship between x and y
and "weekday" the day of the week relationship between x and y. "day.hour"
will plot the relationship by weekday and hour of the day.

condition For period = "hour", period = "day" and period = "day.hour", setting
condition = TRUEwill plot the relationships split by year. This is useful for
seeing how the relationships may be changing over time.

n Theminimumnumber of points to be sent to the linearmodel. Because there
may only be a few points e.g. hours where two pollutants are available over
oneweek, n can be set to ensure that at least n points are sent to the linear
model. If a period has hours < n that period will be ignored.

rsq.thresh Theminimumcorrelation coefficient (R2) allowed. If the relationshipbetween
x and y is not very good for a particular period, setting rsq.thresh can help
to remove those periods where the relationship is not strong. Any R2 values
below rsq.threshwill not be plotted. If set too high it may not be possible
to fit a smooth line andwarnings will be issues - but the plot still produced.

ylim y-axis limits, specified by the user.
ylab y-axis title, specified by the user.
auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically

try and format pollutant names and units properly e.g. by subscripting the ‘2’
in NO2.

cols Predefined colour scheme, currently only enabled for "greyscale".
span span for loess fit. Controls the fit line: lower values produce amore "wiggly"

fit.
... Other graphical parameters. A useful one to remove the strip with the date

range on at the top of the plot is to set strip = FALSE.

159

23 The linearRelation function

linearRelation(mydata, x = "nox", y = "so2")

year

sl
op

e
fr

om
 S

O
2

=
 m

.N
O

x
+

 c

0.015

0.020

0.025

0.030

0.035

0.040

1998 2000 2002 2004

Figure 74: Relationship betweenNOx and SO2 using the linearRelation function. Notethat the units of both pollutants are in ppb. The uncertainty in the slope of the
hourly relationship between SO2 and NOx on amonthly basis is shown at 95%confidence intervals. The smooth line and shaded area show the general trend
using a loess smooth.

23.2 Example of use
Someexamples of the linearRelation function are given in this section. Thefirst example
considers the ratio of SO2/NOx , which is plotted in Figure 74.Figure 74 shows the relationship betweenNOx and SO2. Early in the series (pre-1999)the ratio of SO2/NOx was relatively high (about 3.5 in volume units). However, from1999 onwards the relationship has been relatively constant. One (probable) explanation
for the higher ratio at the beginning of the series is due to a higher fuel sulphur content
of petrol and diesel. There are many other examples shown in the package itself, type
?linearRelation to see them.
One of the useful applications of this function is to consider the ‘oxidant’ (sum of NO2andO3) slopewhere there aremeasurements of NOx , NO2 andO3 at a site. At roadsidesites the oxidant slope provides a good indication of the likely ratio of NO2/NOx in vehicleexhausts. Because there are few sites that measure O3 at the roadside, the calcFno2function provides an alternativemethod of estimation. Figure 75 shows how the oxidant

slope (an estimate of f-NO2) varies by day of the week and hour of the day.

160

24 The trendLevel function

linearRelation(mydata, x = "nox", y = "ox", period = "day.hour")

hour

f−
N

O
2

(%
)

by
 v

ol
.

4

6

8

10

12

14

0 6 12 18 23

Monday

0 6 12 18 23

Tuesday

0 6 12 18 23

Wednesday

0 6 12 18 23

Thursday

0 6 12 18 23

Friday

0 6 12 18 23

Saturday

0 6 12 18 23

Sunday

Figure 75:Oxidant slope by day of the week and hour of the day.

24 The trendLevel function
24.1 Purpose

The trendLevel function provides a way of rapidly showing a large amount of data in a
condensedway. In one plot, the variation in the concentration of a pollutant is shown by
time of day, month of year and year. The plot therefore provides information on trends,
seasonal effects and diurnal variations. This is one of several similar functions that are
being developed.

24.2 Options available
mydata The openair data frame to use to generate the trendLevel plot.
pollutant The name of the data series in mydata to sample to produce the trendLevel

plot.
x The nameof the data series to use as the trendLevel x-axis. This is usedwith

the y and typeoptions to bin the data before applying statistic (see below).
Allowed options currently include "hour", "month", "year", and "wd". Other
data series in mydata can also be used. (Note: trendLevel does not allow
duplication in x, y and type options within a call.)

y,type The names of the data series to use as the trendLevel y-axis and for addi-
tional conditioning, respectively. As x above.

rotate.axis The rotation to be applied to trendLevel x and y axes. The default, c(90,
0), rotates the x axis by 90 degrees but does not rotate the y axis. (Note:
If only one value is supplied, this is applied to both axes; if more than two
values are supplied, only the first two are used.)

n.levels The number of levels to split x, y and type data into if numeric. The default,
c(10, 10, 4), cuts numeric x and y data into ten levels and numeric type
data into four levels. (Notes: This option is ignored for date conditioning and
factors. If less than three values are supplied, three values are determined
by recursion; if more than three values are supplied, only the first three are
used.)

limits The colour scale range to use when generating the trendLevel plot.

161

24 The trendLevel function

cols The colour set to use to colour the trendLevel surface. cols is passed to
openColours for evaluation. See ?openColours for more details.

auto.text Automatic routine text formatting. auto.text = TRUEpasses commonlattice
labelling terms (e.g. xlab for the x-axis, ylab for the y-axis and main for the
title) to the plot via quickText to provide common text formatting. The al-
ternative auto.text = FALSE turns this option off and passes any supplied
labels to the plot without modification.

key.header,key.footer Adds additional text labels above and/or below the scale key, re-
spectively. For example, passing theoptionskey.header = "", key.footer
= c("mean","nox") adds the addition text as a scale footer. If enabled
(auto.text = TRUE), these arguments arepassed to the scale key (drawOpenKey)
via quickText to handle formatting. The term "get.stat.name", used as the
default key.header setting, is reserved and automatically adds statistic func-
tion names or defaults to "level"when unnamed functions are requested
via statistic.

key.position Locationwhere the scale key should be plotted. Allowed arguments cur-
rently include "top", "right", "bottom" and "left".

key Fine control of the scale key via drawOpenKey. See ?drawOpenKey for further
details.

statistic The statistic method to be use to summarise locally binned pollutantmeas-
urements with. Three options are currently encdd: "mean" (default), "max"
and "frequency". (Note: Functions can also be sent directly via statistic.
However, this option is still in development and should be used with caution.
See Details below.)

stat.args Additional options to be usedwith statistic if this is a function. The extra
options should be supplied as a list of named parameters. (seeDetails below.)

stat.safe.mode Anadditionprotectionappliedwhenusing functionsdirecltywithstatistic
thatmost users can ignore. This option returnsNA insteadof runningstatistic
on binned subsamples that are empty. Many common functions terminate
with an error meassagewhen applied to an empty dataset. So, this options
provides amechanism to work with such functions. For a very few cases, e.g.
for a function that countedmissing entries, it might need to be set to FALSE
(see Details below.)

drop.unused.types Hide unused/empty type conditioning cases. Some conditioning
optionsmay generate empty cases for some data sets, e.g. a hour of the day
when nomeasurements were taken. Empty x and y cases generate ’holes’ in
individual plots. However, empty type cases would produce blank panels if
plotted. Therefore, the default, TRUE, excludes these empty panels from the
plot. The alternative FALSE plots all type panels.

... Addition options are passed on to cutData for type handling and levelplot
in lattice for finer control of the plot itself.

24.3 Example of use
Previous versions of openair included two very similar functions, trend.level.hour and
trend.level.wd. trend.level.hour allowed you to plot the variation in one pollutant

162

24 The trendLevel function

trendLevel(mydata, "nox")

month

ho
ur

00
02
04
06
08
10
12
14
16
18
20
22

1998

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

1999 2000

2001 2002

00
02
04
06
08
10
12
14
16
18
20
22

2003

00
02
04
06
08
10
12
14
16
18
20
22

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

2004 2005

mean

NOx

100

150

200

250

300

350

400

Figure 76: Standard trendLevel output.

against three other properties: month of year (as the x axis), hour of day (as the y axis)
and year (as the type condition). This provides a convenient means of summarising a
large amount of information on the basis of trends, seasonal effects and diurnal variations.
trend.level.wd worked in a similar fashion but used wind direction for the y axis to
provide addition spatial information.
As part of on-going work to standardise and develop functions within openair, we

recently decided to combine these two functions. Thework resulted in the development
of trendLevel, a combined function with some extra capabilities.
However, in trendLevel the x and y axis and type properties can also be defined

as part of the plot command. For example, to generate a plot equivalent to the old
trend.level.wd, you can use the code in Figure 77.
Making the x, y and type options available like this prompted an obvious further devel-

opment. In the previous functions the available options were “year”, “month”, “hour” (all
extracted from the date field of the data frame) and “wd”, the wind direction field. They
are the options we foundmost useful to handle data in this fashion. However, youmight
have better ideas. Youmight also have other data series that we have not even considered.
So, we extended x, y and type access to all the fields in the supplied data frame. So, for
example you can now add in and use new parameters as shown in Figure 78.
This plot indicates that the highest NOx concentrationsmost strongly associate withwind sectors about 200 degrees, appear to be decreasing over the years, but do not appear

to associatewith an SO2 richNOx source. Using type = ”so2"would have conditioned by

163

24 The trendLevel function

trendLevel(mydata, pollutant = "nox", y = "wd")

month

w
in

d
di

r.

N

NE

E

SE

S

SW

W

NW

1998

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

1999 2000

2001 2002

N

NE

E

SE

S

SW

W

NW

2003

N

NE

E

SE

S

SW

W

NW

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

2004 2005

mean

NOx

50

100

150

200

250

300

350

400

Figure 77: trendLevel output with wind direction as y axis.

absolute SO2 concentration. As both amoderate contribution from an SO2 rich source anda high contribution from an SO2 poor source could generate similar SO2 concentrations,such conditioning can sometimes blur interpretations. The use of this type of ‘over pollut-
ant’ ratio reduces this blurring by focusing conditioningon caseswhenNOx concentrations(be they high or low) associate with relatively high or low SO2 concentrations.By default trendLevel subsamples the plotted pollutant data by the supplied x, y
and type parameters and in each case calculates the mean. The option statistic has
always let you apply other statistics. For example, trend.level.hour also calculated
themaximum via the option statistic = ”max”. However, as with x, y and type before,
these previously needed to be hard coded into the functions themselves by us. This
again restricts your options to explore your data quickly and efficiently. So, we looked at
ways of evolving the statistic option. We have kept the previous predefine options for
consistency, but we have now also developed statistic so you can supply a function of
your own instead.
As a simple example, consider the above plot which summarises bymean. This tells us

about average concentrations. It might also be useful to consider a particular percentile of
concentrations. This can be done by defining one’s own function as shown in Figure 79.
This type offlexibility really opens up the potential of the function as a screening tool for

the early stages of data analysis. Increased control of x, y, type and statistic allow you
to very quick explore your data and develop an understanding of howdifferent parameters
interact. Patterns in trendLevel plots can also help to direct your openair analysis. For

164

24 The trendLevel function

new field: so2/nox ratio
mydata$new <- mydata$so2/mydata$nox

condition by mydata$new
trendLevel(mydata, "nox", x = "year", y = "wd", type = "new")

year

w
in

d
di

r. N

NE

E

SE

S

SW

W

NW

new −0.244 to 0.0183

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

new 0.0183 to 0.0237

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

new 0.0237 to 0.0334

N

NE

E

SE

S

SW

W

NW

new 0.0334 to 0.625

mean

NOx

100

150

200

250

300

Figure 78: trendLevel output with SO2: NOx ratio type conditioning.

example, possible trends in data conditioned by year would suggest that functions like
smoothTrend or TheilSen could provide further insight. Likewise, windRose or polarPlot
could be useful next steps if wind speed and direct conditioning produces interesting
features. However, perhapsmost interestingly, novel conditioning or the incorporation of
novel parameters in this type of highly flexible function provides ameans of developing
new data visualisation and analysis methods.
For further details of the new trendLevel function, see the associated help documenta-

tion, ?trendLevel.

165

25 GoogleMapsPlot function

function to estimate 95th percentile
percentile <- function(x) quantile(x, probs = 0.95, na.rm = TRUE)

apply to present plot
trendLevel(mydata, "nox", x = "year", y = "wd", type = "new", statistic = percentile)

year

w
in

d
di

r. N

NE

E

SE

S

SW

W

NW

new −0.244 to 0.0183

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

new 0.0183 to 0.0237

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

new 0.0237 to 0.0334

N

NE

E

SE

S

SW

W

NW

new 0.0334 to 0.625

percentile

NOx

100

150

200

250

300

350

400

450

500

550

Figure 79: trendLevel using locally defined statistic.

25 GoogleMapsPlot function
25.1 Purpose

Air pollution is an inherently spatial problem. The spatial aspects can be considered
in many different ways and the GoogleMapsPlot function considers simple maps based
on the Google StaticMaps API (http://code.google.com/apis/maps/documentation/
staticmaps/). The initial aim of this function is tomake it easy to plot spot location inform-
ation e.g. a concentration, on amap. Compared with a full-blownGIS the GoogleMapsPlot
function is limited, but nevertheless very useful. One of themost useful aspects is that the
user only need supply latitude and longitude information for anywhere in the world and the
map is automatically downloaded from the Google server.
Another benefit of the GoogleMapsPlot function is that it works in the same way as

other openair functions e.g. allows fro conditioning. Therefore, it is trivial to plot panels
of maps split by variables such as “season”.

25.2 Options available
mydata The openair data frame to use to generate the GoogleMapsPlot plot.
latitude,longitude The names of the data series in mydata giving the latitudes and

longitudes, respectively, of measurements. If only one latitude longitude pair
are supplied, the function applies a default range to the plot. To override this
either set the required range using xlim and ylim (see below) or the map
zoom level. (Note: The default is equivalent to zoom = 15.)

166

http://code.google.com/apis/maps/documentation/staticmaps/
http://code.google.com/apis/maps/documentation/staticmaps/

25 GoogleMapsPlot function

type The type of data conditioning to apply before plotting. The default is will
produce a single plot using the entire data. Other type options include "hour"
(for hour of the day), "weekday" (for day of theweek) and "month" (formonth
of the year), "year", "season" (string, summer, autumn or winter) and "day-
light" (daylight or nighttime hour). But it is also possible to set type to the
name of another variable in mydata, in which case the plotted data will be
divided into quantiles based on that data series. See cutData for further
details.(NOTE: type conditioning currently allows up to two levels of condi-
tioning, e.g., type = c("weekday", "daylight").)

xlim,ylim The x-axis and y-axis size ranges. By default these sized on the basis of
latitude and longitude, but can be forced as part of the plot call [NOTE:
This IN DEVELOPMENT option is currently restricted and requested ranges
are forced square tomaintain map aspect ratio.].

pollutant If supplied, the name of a pollutant or variable in mydata that is to be evalu-
ated at the eachmeasurement point. Depending on settings, nominally cols
and cex, the evaluation can be by colour, size or both.

labels If supplied, either the name of mydata column/field containing the labels to
be used or a list, containing that field name (as labels), and any other label
properties, e.g. cex, col, etc, required for fine-tuning label appearance.

cols The colour set to use to colour scaled data. Typically, cols is passed to
openColours for evaluation, but can be forced to one colour using e.g. col
= "red". The special case cols = "greyscale" forces all plot components
(themap, the data layer and the plot strip of type conditioning) to greyscale
for black andwhite printing. See ?openColours for more details.

limits By default, the data colour scale is fitted to the total data range. However,
there are circumstances when the user may wish to set different ones. In
such cases limits can be set in the form c(lower, upper) to modify the
colour range.

cex The size of data points plotted onmaps. By default this NULL or pollutant
if supplied. If NULL all points are plotted an equal size. If pollutant or the
name of another variable in mydata this is used by scaled using cex.range. If
necessary, cex can also be forced, e.g. cex = 1 tomake all points the same
size.

pch The plot symbol to be usedwhen plotting data. By default this is a solid circle
(pch = 20), but can be any predefined symbol, e.g. pch = 1 is the open circle
symbol used inmost standard R plots. pchmay also be the name of a variable
in mydata for local control.

cex.range The range to rescale cex values to if cex is supplied as a mydata variable
name. This is intended to provide sensible data point points regardless of
the variable value range but may be require fine-tuning.

xlab,ylab,main The x-axis, y-axis and main title labels to be added to the plot. All la-
bels are passed via quickText to handle formatting if enabled (auto.text =
TRUE). By default GoogleMapsPlot uses latitude and longitude names as
xlab and ylab, respectively.

axes An alternative (short hand) option to add/remove (TRUE/FALSE) all x and y
axis annotation and labelling.

167

25 GoogleMapsPlot function

map If supplied, an RgoogleMaps output, to be used as a backgroundmap. If NULL
(as in default), a map is produced using the RgoogleMaps-package function
MapBackground, the supplied latitude and longitude ranges, and any ad-
ditional RgoogleMaps-package arguments supplied as part of the plot call.
(Note: the map object currently used in panel... functions is a modified
form of this output, details to be confirmed.)

map.raster Should themapbeplottedas a raster object? ThedefaultTRUEusespanel.GoogleMapsRaster
toproduce themap layer,while thealternative (FALSE) usespanel.GoogleMaps.
(NOTE: The raster version is typically much faster but may not be available
for all computer systems.)

map.cols Like cols a colour scale, but, if supplied, used to recolour the map layer
before plotting. (NOTE: If set, this will override cols = "greyscale".)

aspect The aspect ratio of the plot.
as.table as.table is alatticeoption that controls theorder inwhichmultiple panels

are displayed. The default (TRUE) produces layouts similar to other openair
plot.

plot.type Themethod touse toproduce thedata layer for theplot. Bydefault (plot.type
= "xy"), this is an x-y style scatter plot, but can also be other pre-defined op-
tions (e.g. "level" for a levelplot) or a user-defined panel of a similar structire
to panel... functions in lattice.

plot.transparent Data layer transparency control. When enabled, this forces colours
used in the data layer to transparent, and can be a numeric setting the colour
density, from invisible (0) to solid (1), or a logical (TRUE applying default 0.5).
Note: User-defined colours (and some panel defaults when supplying special-
ist functions using e.g. plot.type = panel...) may sometimes supersede
this option.

key Fine control for the color scale key. By default (key = NULL) the key is gen-
erated is a colour range exists, but can be forced (key = TRUE/FALSE) or
controlled at a higher level (via drawOpenKey).

key.position Locationwhere the scale key should be plotted. Allowed arguments cur-
rently include "top", "right", "bottom" and "left".

key.header,key.footer Header and footer labels to add to colour key, if drawn. If en-
abled (auto.text = TRUE), these arguments are passed to the scale key
(drawOpenKey) via quickText to handle formatting.

auto.text Automatic routine text formatting. auto.text = TRUE allows labels (xlab,
ylab, main, etc.) to be passed to the plot via quickText. auto.text = FALSE
turns this option off and passes labels to the plot without modification.

... Additionoptions arepassedon tocutData fortypehandling, MapBackground
in RgoogleMaps for map layer production, and xyplot in lattice for data
layer production.

168

25 GoogleMapsPlot function

25.3 Example of usage
Tomake things a bit more interesting we are going to consider O3 concentrations acrossthe UK. Hourly O3 data from 16 sites for 2006 has been placed on a server together witha separate file consisting of the site names and locations. The first thing to do is import the
data:

load(url("http://www.erg.kcl.ac.uk/downloads/Policy_Reports/AQdata/o3Measurements.RData"))
head(o3Measurements)

date o3 site
1 2006-01-01 00:00:00 NA Aston.Hill
2 2006-01-01 01:00:00 74 Aston.Hill
3 2006-01-01 02:00:00 72 Aston.Hill
4 2006-01-01 03:00:00 72 Aston.Hill
5 2006-01-01 04:00:00 70 Aston.Hill
6 2006-01-01 05:00:00 66 Aston.Hill

load(url("http://www.erg.kcl.ac.uk/downloads/Policy_Reports/AQdata/siteDetails.RData"))
head(siteDetails)

site latitude longitude
1 Aston.Hill 52.50 -3.0342
2 Bottesford 52.93 -0.8147
3 Bush.Estate 55.86 -3.2058
4 Eskdalemuir 55.32 -3.2061
5 Glazebury 53.46 -2.4721
6 Harwell 51.57 -1.3253

In this example, we want to showwhat meanO3 concentrations look like across the UK(and Ireland becauseMaceHeadwas included) and then consider the concentrations by
season, and then take a look at peak hour concentrations. First it is necessary to calculate
themeans andmaximums by season:
Figure 80 shows the annual mean concentration of O3 at UK and Ireland sites. It isclear that the highest concentrations of O3 are atMaceHead (Ireland) and Strath Vaich(Scotland) — sites that are well exposed to “clean” North Atlantic air and where deposition

processes are not so important; at least atMace Head.
For mean concentrations Figure 81 shows that springtime concentrations are highest,

which will in part be due to the northern hemispheric peak in O3 concentrations (Monks,2000). Concentrations are particularly high at the remote sites of Mace Head (Ireland)
and Strath Vaich (Scotland). By contrast, Figure 82 shows the peak hourly concentration
of O3. In this case there is a very different distribution of O3 concentrations. The highestconcentrations are now observed in the south-east of England in summer, whichwill be
due to regional scale pollution episodes. By contrast, the wintertimeO3 concentrationsaremuch lower everywhere.

169

25 GoogleMapsPlot function

cut data into seasons load plyr package
library(plyr)
o3Measurements <- cutData(o3Measurements, "season")
calculate means/maxes and merge...
annual <- ddply(o3Measurements, .(site), numcolwise(mean), na.rm = TRUE)
by site AND season
means <- ddply(o3Measurements, .(site, season), numcolwise(mean), na.rm = TRUE)
peaks <- ddply(o3Measurements, .(site, season), numcolwise(max), na.rm = TRUE)
annual <- merge(annual, siteDetails, by = "site")
means <- merge(means, siteDetails, by = "site")
peaks <- merge(peaks, siteDetails, by = "site")

now make first plot
GoogleMapsPlot(annual, lat = "latitude", long = "longitude", pollutant = "o3",

maptype = "roadmap", col = "jet")

[1] "http://maps.google.com/maps/api/staticmap?center=54.166028,-4.2118515&zoom=6&size=640x640&maptype=roadmap&format=png32&sensor=true"

longitude

la
tit

ud
e

52

54

56

−10 −5 0

O3

50

55

60

65

70

Figure 80:Mean concentrations of O3 around the UK and Ireland (µgm−3).

170

25 GoogleMapsPlot function

GoogleMapsPlot(means, lat = "latitude", long = "longitude", pollutant = "o3",
type = "season", maptype = "roadmap", col = "jet")

[1] "http://maps.google.com/maps/api/staticmap?center=54.166028,-4.2118515&zoom=6&size=640x640&maptype=roadmap&format=png32&sensor=true"

longitude

la
tit

ud
e

52

54

56

spring (MAM)

−10 −5 0

summer (JJA)

−10 −5 0

autumn (SON)

52

54

56

winter (DJF)

O3

40

50

60

70

80

Figure 81:Mean hourly concentrations of O3 around the UK and Ireland split by season(µgm−3).

171

25 GoogleMapsPlot function

GoogleMapsPlot(peaks, lat = "latitude", long = "longitude", pollutant = "o3",
type = "season", maptype = "roadmap", col = "jet")

[1] "http://maps.google.com/maps/api/staticmap?center=54.166028,-4.2118515&zoom=6&size=640x640&maptype=roadmap&format=png32&sensor=true"

longitude

la
tit

ud
e

52

54

56

spring (MAM)

−10 −5 0

summer (JJA)

−10 −5 0

autumn (SON)

52

54

56

winter (DJF)

O3

100

150

200

250

Figure 82:Maximum hourly concentrations of O3 around the UK and Ireland split byseason (µgm−3).

172

26 openair back trajectory functions

26 openair back trajectory functions
Back trajectories are extremely useful in air pollution and can provide important informa-
tion on air mass origins. Despite the clear usefulness of back trajectories, their use tends
to be restricted to the research community. Back trajectories are used for many purposes
from understanding the origins of air masses over a few days to undertaking longer term
analyses. They are often used to filter air mass origins to allow for more refined analyses
of air pollution— for example trends in concentration by air mass origin. They are often
also combined with more sophisticated analyses such as cluster analysis to help group
similar type of air mass by origin.
Perhaps one of the reasons why back trajectory analysis is not carried out more often is

that it can be time consuming to do. This is particularly so if one wants to consider several
years at several sites. It can also be difficult to access back trajectory data. In an attempt
to overcome some of these issues and expand the possibilities for data analysis, openair
makes several functions available to access and analyse pre-calculated back trajectories.
Currently these functions allow for the import of pre-calculated back trajectories are

several pre-define locations and some trajectory plotting functions. In time all of these
functions will be developed to allowmore sophisticated analyses to be undertaken. Also it
should be recognised that these functions are in their early stages of development and
will may continue to change and be refined.
This importTraj function imports pre-calculated back trajectories using the HYSPLIT

trajectorymodel (Hybrid Single Particle Lagrangian Integrated TrajectoryModel http://
ready.arl.noaa.gov/HYSPLIT.php). Trajectories are run at 3-hour intervals and stored
in yearly files (see below). The trajectories are started at ground-level (10m) and propag-
ated backwards in time. The data are stored on web-servers at King’s College London
in a similar way to importKCL, which makes it very easy to import pre-processed tra-
jectory data for a range of locations and years. Note— the back trajectories have been
pre-calculated for specific locations and stored as .RData objects. Users should contact
David Carslaw to request the addition of other locations. So far only a few receptors are
available to users but in time the number will increase. It should be feasible for example to
run back trajectories for the past 20 years at all the EMEP sites in Europe.14
These trajectories have been calculated using theGlobalNOAA-NCEP/NCAR reanalysis

data archives. The global data are on a latitude-longitude grid (2.5 degree). Note that there
aremany differentmeteorological data sets that can be used to runHYSPLIT e.g. including
ECMWFdata. However, in order tomake it practicable to run and store trajectories for
many years and sites, the NOAA-NCEP/NCAR reanalysis data is most useful. In addition,
these archives are available for use widely, which is not the case for many other data
sets e.g. ECMWF. HYSPLIT calculated trajectories based on archive datamay be distrib-
uted without permission (see http://ready.arl.noaa.gov/HYSPLIT_agreement.php).
For those wanting, for example, to consider higher resolutionmeteorological data sets it
may be better to run the trajectories separately.
Users should see the help file for importTraj to get an up to date list of receptorswhere

back trajectories have been calculated.
As an example, wewill import trajectories for London in 2010. Importing them is easy:
traj <- importTraj(site = "london", year = 2010)

The file itself contains lots of information that is of use for plotting back trajectories:

14It takes about 15 hours to run 20 years of 96-hour back trajectories at 3-hour intervals.

173

http://ready.arl.noaa.gov/HYSPLIT.php
http://ready.arl.noaa.gov/HYSPLIT.php
http://ready.arl.noaa.gov/HYSPLIT_agreement.php

26 openair back trajectory functions

head(traj)

receptor year month day hour hour.inc lat lon height pressure
1 1 2010 1 1 9 0 51.50 -0.100 10.0 994.7
2 1 2010 1 1 8 -1 51.77 0.057 10.3 994.9
3 1 2010 1 1 7 -2 52.03 0.250 10.5 995.0
4 1 2010 1 1 6 -3 52.30 0.488 10.8 995.0
5 1 2010 1 1 5 -4 52.55 0.767 11.0 995.4
6 1 2010 1 1 4 -5 52.80 1.065 11.3 995.6
date2 date
1 2010-01-01 09:00:00 2010-01-01 09:00:00
2 2010-01-01 08:00:00 2010-01-01 09:00:00
3 2010-01-01 07:00:00 2010-01-01 09:00:00
4 2010-01-01 06:00:00 2010-01-01 09:00:00
5 2010-01-01 05:00:00 2010-01-01 09:00:00
6 2010-01-01 04:00:00 2010-01-01 09:00:00

The traj data frame contains among other things the latitude and longitude of the back
trajectory, the height (m) and pressure (Pa) of the trajectory. The date field is the arrival
time of the air-mass and is useful for linking with ambient measurement data.
Next, we consider how to plot back trajectories with a few simple examples. The first

example will consider a potentially interesting periodwhen the Icelandic volcano, Eyjaf-
jallajökull erupted in April 2010. The eruption of Eyjafjallajökull resulted in a flight-ban
that lasted six days across many European airports. In Figure 83 selectByDate is used to
consider the 7 days of interest andwe choose to plot the back trajectories as lines rather
than points (the default). Figure 83 does indeed show that many of the back trajectories
originated from Iceland over this period. Note also the plot automatically includes a world
basemap. The basemap itself is not at very high resolution but is useful for the sorts of
spatial scales that back trajectories exist over. The base map is also global, so provided
that there are pre-calculated back trajectories, thesemaps can be generated anywhere in
the world.
There are a few other ways of representing the data shown in Figure 83. For example,

it might be useful to plot the trajectories for each day. To do this we need tomake a new
column ‘day’ which can be used in the plotting. The first example considers plotting the
back trajectories in separate panels (Figure 84).
Another way of plotting the data is to group the trajectories by day and colour them.

This timewe also set a few other options to get the layout wewant— shown in Figure 85.
So far the plots have provided information onwhere the back trajectories come from,

grouped or split by day. It is also possible, in commonwithmost other openair functions
to split the trajectories by many other variables e.g. month, season and so on. How-
ever, perhaps one of themost useful approaches is to link the back trajectories with the
concentrations of a pollutant. As mentioned previously, the back trajectory data has a
column ‘date’ representing the arrival time of the air mass that can be used to link with
concentrationmeasurements. A couple of steps are required to do this using the merge
function.

174

26 openair back trajectory functions

trajPlot(selectByDate(traj, start = "15/4/2010", end = "21/4/2010"), plot.type = "l")

longitude

la
tit

ud
e

55

60

65

70

75

−50 −40 −30 −20 −10 0 10

Figure 83: 96-hour HYSPLIT back trajectories centred on London for 7 days in April 2010.

make a day column
traj$day <- as.Date(traj$date)

plot it choosing a specfic layout
trajPlot(selectByDate(traj, start = "15/4/2010", end = "21/4/2010"), plot.type = "l",

type = "day", layout = c(7, 1))

longitude

la
tit

ud
e

55

60

65

70

75

−50 −40 −30 −20 −10 0 10

2010−04−15

−50 −40 −30 −20 −10 0 10

2010−04−16

−50 −40 −30 −20 −10 0 10

2010−04−17

−50 −40 −30 −20 −10 0 10

2010−04−18

−50 −40 −30 −20 −10 0 10

2010−04−19

−50 −40 −30 −20 −10 0 10

2010−04−20

−50 −40 −30 −20 −10 0 10

2010−04−21

Figure 84: 96-hour HYSPLIT back trajectories centred on London for 7 days in April 2010,
shown separately for each day.

175

26 openair back trajectory functions

trajPlot(selectByDate(traj, start = "15/4/2010", end = "21/4/2010"), plot.type = "l",
group = "day", col = "jet", lwd = 2, key.pos = "right", key.col = 1)

longitude

la
tit

ud
e

55

60

65

70

75

−50 −40 −30 −20 −10 0 10

day
2010−04−15
2010−04−16
2010−04−17
2010−04−18
2010−04−19
2010−04−20
2010−04−21

Figure 85: 96-hour HYSPLIT back trajectories centred on London for 7 days in April 2010,
shown grouped for each day and coloured accordingly.

import data for North Kensington
kc1 <- importAURN("kc1", year = 2010)
now merge with trajectory data by 'date'
traj <- merge(traj, kc1, by = "date")
look at first few lines
head(traj)

date receptor year month day hour hour.inc lat lon
1 2010-01-01 09:00:00 1 2010 1 2010-01-01 9 0 51.50 -0.100
2 2010-01-01 09:00:00 1 2010 1 2010-01-01 8 -1 51.77 0.057
3 2010-01-01 09:00:00 1 2010 1 2010-01-01 7 -2 52.03 0.250
4 2010-01-01 09:00:00 1 2010 1 2010-01-01 6 -3 52.30 0.488
5 2010-01-01 09:00:00 1 2010 1 2010-01-01 5 -4 52.55 0.767
6 2010-01-01 09:00:00 1 2010 1 2010-01-01 4 -5 52.80 1.065
height pressure date2 o3 no2 co so2 pm10 nox no pm2.5 nv2.5
1 10.0 994.7 2010-01-01 09:00:00 46 29 0.3 0 8 38 6 NA NA
2 10.3 994.9 2010-01-01 08:00:00 46 29 0.3 0 8 38 6 NA NA
3 10.5 995.0 2010-01-01 07:00:00 46 29 0.3 0 8 38 6 NA NA
4 10.8 995.0 2010-01-01 06:00:00 46 29 0.3 0 8 38 6 NA NA
5 11.0 995.4 2010-01-01 05:00:00 46 29 0.3 0 8 38 6 NA NA
6 11.3 995.6 2010-01-01 04:00:00 46 29 0.3 0 8 38 6 NA NA
v2.5 nv10 v10 ws wd site code
1 NA 8 0 NA NA London N. Kensington KC1
2 NA 8 0 NA NA London N. Kensington KC1
3 NA 8 0 NA NA London N. Kensington KC1
4 NA 8 0 NA NA London N. Kensington KC1
5 NA 8 0 NA NA London N. Kensington KC1
6 NA 8 0 NA NA London N. Kensington KC1

This timewe can use the option pollutant in the function trajPlot, which will plot the
back trajectories coloured by the concentration of a pollutant. Figure 86 does seem to
show elevated PM10 concentrations originating from Iceland over the period of interest.In fact, these elevated concentrations occur on two days as shown in Figure 84. However,
care is needed when interpreting such data because other analysis would need to rule
out other reasons why PM10 could be elevated; in particular due to local sources of PM10.

176

26 openair back trajectory functions

trajPlot(selectByDate(traj, start = "15/4/2010", end = "21/4/2010"), plot.type = "l",
pollutant = "pm10", col = "jet", lwd = 2)

PM10

longitude

la
tit

ud
e

55

60

65

70

75

−50 −40 −30 −20 −10 0 10

10

15

20

25

30

35

40

45
50
55
60
65

Figure 86: 96-hour HYSPLIT back trajectories centred on London for 7 days in April 2010,
coloured by the concentration of PM10 (µgm−3).

There are lots of openair functions that can help here e.g. timeVariation or timePlot to
see if NOx concentrations were also elevated (which they seem to be). It would also beworth considering other sites for back trajectories that could be less influenced by local
emissions.
However, it is possible to account for the PM that is local to some extent by considering

the relationship between NOx and PM10 (or PM2.5). For example, using scatterPlot (notshown):
scatterPlot(kc1, x = "nox", y = "pm2.5", avg = "day", linear = TRUE)

which suggests a gradient of 0.084. Therefore we can remove the PM10 that is associ-ated NOx in kc1 data, making a new column pm.new:
kc1 <- transform(kc1, pm.new = pm10 - 0.084 * nox)

Wehave alreadymerged kc1with traj, so to keep things simple we import traj again
and merge it with kc1. Note that if we had thought of this initially, pm.new would have
been calculated first beforemerging with traj.

traj <- importTraj(site = "london", year = 2010)
traj <- merge(traj, kc1, by = "date")

Now it is possible to plot the trajectories:
trajPlot(selectByDate(traj, start = "15/4/2010", end = "21/4/2010"), plot.type = "l",

pollutant = "pm.new", col = "jet", lwd = 2)

177

26 openair back trajectory functions

trajLevel(subset(traj, lat > 40 & lat < 70 & lon > -20 & lon < 20), pollutant = "pm10")

PM10

longitude

la
tit

ud
e

45

50

55

60

65

70

−10 0 10

10

15

20

25

30

35

40

45

50

Figure 87:Gridded back trajectory concentrations showingmean PM10 concentrations.

Which, interestingly still clearly shows elevated PM10 concentrations for those twodays that cross Iceland. The same is also true for PM2.5. However, asmentioned previously,checking other sites in more rural areas would be a good idea.
Over longer periods of time (say a month or a year) multiple back trajectories begin

to overlap making them difficult to interpret. For this reason, the trajLevel plot has
been developed to aggregate back trajectory data and plot it in alternative ways— either
as griddedmeans or griddedmeans that have been smoothed. However, more useful is
that whenmany back trajectories are analysed they begin to show the geographic origin
most associated with elevated concentrations. With enough (dissimilar) trajectories those
locations leading to the highest concentrations begin to be revealed. When awhole year
of back trajectory data is plotted the individual back trajectories can extend 1000s of km.
In the example below the geographic area is restricted.
Figure 87 shows the situation for PM10 concentrations. It was calculated by recordingthe associated PM10 concentration for each point on the back trajectory based on thearrival time concentration using 2010 data. The plot shows the geographic areas most

strongly associated with high PM10 concentrations i.e. to the east in continental Europe.Figure 87 is useful, but it can be clearer if the trajectory surface is smoothed, which has
been done for PM2.5 concentrations shown in Figure 88.In commonwithmost other openair functions, the flexible ‘type’ option can be used to
split the data in flexible ways. For example, Figure 89 shows the smoothed back trajector-
ies for PM2.5 concentrations by season.It should be noted that it makes sense to analyse back trajectories for pollutants that
have a large regional component — such as particles or O3. It makes little sense to analysepollutants that are known to have local impacts e.g. NOx . However, a species such as NOxcan be helpful to exclude “fresh” emissions from the analysis.

178

26 openair back trajectory functions

trajLevel(subset(traj, lat > 40 & lat < 70 & lon > -20 & lon < 20), pollutant = "pm2.5",
smooth = TRUE)

PM2.5

longitude

la
tit

ud
e

45

50

55

60

65

70

−10 0 10

10

15

20

25

30

Figure 88:Gridded and smoothed back trajectory concentrations showingmean PM2.5concentrations.

trajLevel(subset(traj, lat > 40 & lat < 70 & lon > -20 & lon < 20), pollutant = "pm2.5",
smooth = TRUE, type = "season", layout = c(4, 1))

PM2.5

longitude

la
tit

ud
e

45

50

55

60

65

70

−10 0 10

spring (MAM)

−10 0 10

summer (JJA)

−10 0 10

autumn (SON)

−10 0 10

winter (DJF)

5

10

15

20

25

30

Figure 89:Gridded and smoothed back trajectory concentrations showingmean PM2.5concentrations split by season.

179

26 openair back trajectory functions

26.1 Back trajectory cluster analysis with the trajCluster function
Often it is useful to use cluster analysis on back trajectories to group similar air mass
origins together. The principal purpose of clustering back trajectories is to post-process
data according to cluster origin. By grouping data with similar geographic origins it is
possible to gain information on pollutant species with similar chemical histories. There are
several ways in which clustering can be carried out and several measures of the similarity
of different clusters. A key issue is how the distance matrix is calculated, which determines
the similarity (or dissimilarity) of different back trajectories. The simplest measure is the
Euclidean distance. However, an angle-basedmeasure is also often used. The two distance
measures are defined below. In openair the distancematrices are calculated using C++
code because their calculation is computationally intensive. Note that these calculations
can also be performed directly in the HYSPLITmodel itself.
The Euclidean distance between two trajectories is given by Equation 10. Where X1,

Y1 and X2, Y2 are the latitude and longitude coordinates of back trajectories 1 and 2,
respectively. n is the number of back trajectory points (96 hours in this case).

d1,2 =

√√√√ n∑
i=1

((X1i − X2i)2 + (Y1i − Y2i))2 (10)

The angle distance matrix is a measure of how similar two back trajectory points are
in terms of their angle from the origin i.e. the starting location of the back trajectories.
The angle-basedmeasure will often capture some of the important circulatory features
in the atmosphere e.g. situations where there is a high pressure located to the east of
the UK. However, themost appropriate distancemeasure will be application dependent
and is probably best tested by the extent to which they are able to differentiate different
air-mass characteristics, which can be tested through post-processing. The angle-based
distancemeasure is defined as:

d1,2 =
1

n

n∑
i=1

cos−1

(
0.5

Ai + Bi + Ci√
AiBi

)
(11)

where
Ai = (X1(i)− X0)2 + (Y1(i)− Y0)2 (12)

Bi = (X2(i)− X0)2 + (Y2(i)− Y0)2 (13)

Ci = (X2(i)− X1(i))2 + (Y2(i)− Y1(i))2 (14)
where X0 and Y0 are the coordinates of the location being studied i.e. the startinglocation of the trajectories.
As an example wewill consider back trajectories for London in 2011.
First, the back trajectory data for London is imported together with the air pollution

data for the North Kensington site (KC1).
traj <- importTraj(site = "london", year = 2011)
kc1 <- importKCL(site = "kc1", year = 2011)

The clusters are straightforward to calculate. In this case the back trajectory data
(traj) is supplied and the angle-based distancematrix is used. Furthermore, we choose to
calculate 6 clusters and choose a specific colour scheme. In this case we read the output
from trajCluster into a variable clust so that the results can be post-processed.

180

26 openair back trajectory functions

clust <- trajCluster(traj, method = "Angle", n.cluster = 6, col = "Set2")

lon

la
t

45

50

55

60

65

70

−40 −30 −20 −10 0 10

cluster
1
2
3
4
5
6

Figure 90: The 6-cluster solution to back trajectories calculated for the London North
Kensington site for 2011 showing themean trajectory for each cluster.

clust returns all the back trajectory information together with the cluster (as a char-
acter). This data can now be used together with other data to analyse results further.
However, first it is possible to show all trajectories coloured by cluster, although for a year
of data there is significant overlap and it is difficult to tell them apart.

trajPlot(clust, group = "cluster", plot.type = "l")

Perhapsmore useful is tomerge the cluster data withmeasurement data. In this case
the data at North Kensington site are used. Note that in merging these two data frames it
is not necessary to retain all 96 back trajectory hours and for this reasonwe extract only
the first hour.

kc1 <- merge(kc1, subset(clust, hour.inc == 0), by = "date")

Now kc1 contains air pollution data identified by cluster. The size of this data frame is
about a third of the original size because back trajectories are only run every 3 hours.
The numbers of each cluster are given by:
table(kc1$cluster)

##
1 2 3 4 5 6
347 661 989 277 280 333

i.e. is dominated by clusters 3 and 2 fromwest and south-west (Atlantic).
Now it is possible to analyse the concentration data according to the cluster. There are

numerous types of analysis that can be carried out with these results, which will depend
onwhat the aims of the analysis are in the first place. However, perhaps one of the first
things to consider is how the concentrations vary by cluster. As the summary results
below show, there are distinctly different mean concentrations of most pollutants by
cluster. For example, clusters 1 and 6 are associated with much higher concentrations
of PM10—approximately double that of other clusters. Both of these clusters originatefrom continental Europe. Cluster 5 is also relatively high, which tends to come from the

181

27 Model evaluation— the modStats function

trendLevel(kc1, pollutant = "v2.5", type = "cluster", layout = c(6, 1))

month

ho
ur

00
03
06
09
12
15
18
21

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

1

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

2

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

3

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

4

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

5

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

6 mean

v2.5
0

5

10

15

20

Figure 91: Some of the temporal characteristics of the volatile PM2.5 component plottedbymonth and hour of the day and by cluster for the LondonNorth Kensington
site for 2011.

rest of the UK. Other clues concerning the types of air-mass can be gained from themean
pressure. For example, cluster 5 is associatedwith the highest pressure (1014 kPa), and
as is seen in Figure 90 the shape of the line for cluster 5 is consistent with air-masses
associated with a high pressure system (a clockwise-type sweep).

ddply(kc1, .(cluster), numcolwise(mean), na.rm = TRUE)

cluster nox no2 o3 so2 co pm10_raw pm10 pm25 v2.5 nv2.5
1 1 89.89 51.37 32.86 3.345 0.3884 32.34 35.82 31.35 8.015 23.330
2 2 40.89 30.93 39.58 1.249 0.2229 18.12 17.70 11.55 3.131 8.419
3 3 47.15 32.30 39.84 1.721 0.1889 19.40 17.86 11.26 2.801 8.461
4 4 44.09 30.64 40.06 1.728 0.1884 19.80 17.60 10.99 2.172 8.816
5 5 57.00 39.16 41.43 2.124 0.2263 24.38 25.49 16.52 4.498 12.025
6 6 64.88 42.38 46.40 2.837 0.2895 31.71 35.72 29.73 7.569 22.147
receptor year month day hour hour.inc lat lon height pressure len
1 1 2011 7.660 15.28 10.12 0 51.5 -0.1 10 1005 97
2 1 2011 6.268 15.45 10.59 0 51.5 -0.1 10 1005 97
3 1 2011 7.470 15.75 10.41 0 51.5 -0.1 10 1006 97
4 1 2011 6.863 17.76 10.97 0 51.5 -0.1 10 1007 97
5 1 2011 5.225 16.13 10.12 0 51.5 -0.1 10 1014 97
6 1 2011 4.381 15.80 10.88 0 51.5 -0.1 10 1011 97

Simple plots can be generated from these results too. For example, it is easy to consider
the temporal nature of the volatile component of PM2.5 concentrations (v2.5 in the kc1data frame). Figure 91 for example showshow the concentration of the volatile component
of PM2.5 concentrations varies by cluster by plotting the hour of day-month variation.It is clear from Figure 91 that the clusters associated with the highest volatile PM2.5concentrations are clusters 1 and 6 (European origin) and that these concentrations peak
during spring. There is less data to see clearlywhat is going onwith cluster 5. Nevertheless,
the cluster analysis has clearly separated different air mass characteristics which allows
for more refined analysis of different air-mass types.
Similarly, as considered in section 15, the timeVariation function can also be used to

consider the temporal components.

27 Model evaluation— the modStats function
27.1 Purpose

The modStats function provides key model evaluation statistics for comparing models
against measurements andmodels against other models.

182

27 Model evaluation— the modStats function

There are a very wide range of evaluation statistics that can be used to assess model
performance. There is, however, no single statistic that encapsulates all aspects of in-
terest. For this reason it is useful to consider several performance statistics and also to
understand the sort of information or insight theymight provide.
In the following definitions,Oi represents the ith observed value andMi represents the

ith modelled value for a total of n observations.

Fraction of predictions within a factor or two, FAC2
The fraction of modelled values within a factor of two of the observed values are the
fraction of model predictions that satisfy:

0.5 ≤ Mi

Oi
≤ 2.0 (15)

Mean bias,MB

Themean bias provides a good indication of themean over or under estimate of predic-
tions. Mean bias in the same units as the quantities being considered.

MB =
1

n

N∑
i=1

Mi − Oi (16)

MeanGross Error,MGE

Themean gross error provides a good indication of themean error regardless of whether
it is an over or under estimate. Mean gross error is in the same units as the quantities
being considered.

MGE =
1

n

N∑
i=1

|Mi − Oi | (17)

Normalisedmean bias,NMB

The normalisedmean bias is useful for comparing pollutants that cover different concen-
tration scales and themean bias is normalised by dividing by the observed concentration.

NMB =

n∑
i=1

Mi − Oi

n∑
i=1

Oi

(18)

Normalisedmean gross error,NMGE

The normalisedmean gross error further ignores whether a prediction is an over or under
estimate.

NMGE =

n∑
i=1
|Mi − Oi |

n∑
i=1

Oi

(19)

183

27 Model evaluation— the modStats function

Rootmean squared error, RMSE

The RMSE is a commonly used statistic that provides a good overall measure of how close
modelled values are to predicted values.

RMSE =

√√√√√ n∑
i=1

(Mi − Oi)2

n
(20)

Correlation coefficient, r
The (Pearson) correlation coefficient is ameasure of the strength of the linear relationship
between two variables. If there is perfect linear relationship with positive slope between
the two variables, r =1. If there is a perfect linear relationshipwith negative slope between
the two variables r = −1. A correlation coefficient of 0 means that there is no linear
relationship between the variables.

r =
1

(n − 1)

n∑
i=1

(
Mi −M

σM

)(
Oi − O

σO

)
(21)

Index of Agreement, IOA
The Index of Agreement (IOA) is frequently used in model evaluation and was first de-
veloped and then enhanced byWillmott (1982);Willmott et al. (2011). The original index
has beenwell-tested over many years and arguably provides the best ‘overall’ indicator of
model quality.
The IOA spans between −1 and +1 with values approaching +1 representing better

model performance. An IOA of 0.5, for example, indicates that the sum of the error-
magnitudes is one half of the sum of the observed-deviation magnitudes. When IOA =
0.0, it signifies that the sum of themagnitudes of the errors and the sum of the observed-
deviationmagnitudes are equivalent. When IOA =−0.5, it indicates that the sum of the
error-magnitudes is twice the sum of the perfect model-deviation and observed-deviation
magnitudes. Values of IOA near−1.0 canmean that themodel-estimated deviations about
0 are poor estimates of the observed deviations; but, they also canmean that there simply
is little observed variability — so some caution is neededwhen the IOA approaches−1.

IOA =

1−

n∑
i=1
|Mi − Oi |

c
n∑

i=1
|Oi − O|

, when

n∑
i=1

|Mi − Oi | ≤
n∑

i=1

|Oi − O|

c
n∑

i=1
|Oi − O|

n∑
i=1
|Mi − O|

− 1 , when

n∑
i=1

|Mi − Oi | >
n∑

i=1

|Oi − O|

184

27 Model evaluation— the modStats function

27.2 Options available
mydata A data frame.
mod Name of a variable in mydata that respresents modelled values.
obs Name of a variable in mydata that respresents measured values.
type type determines how the data are split i.e. conditioned, and then plotted.

The default is will produce statistics using the entire data. type can be one
of the built-in types as detailed in cutData e.g. "season", "year", "weekday"
and so on. For example, type = "season"will produce four sets of statistics
— one for each season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable,
then those categories/levels will be used directly. This offers great flexibility
for understanding the variation of different variables and how they depend
on one another.
More thanone type canbeconsiderede.g. type = c("season", "weekday")
will produce statistics split by season and day of the week.

rank.name Simplemodel ranking can be carried out if rank.name is supplied. rank.name
will generally refer to a column representing a model name, which is to
ranked. The ranking is based the Index of Agreement performance, as that
indicator is arguably the best single model performance indicator available.

... Other aruments to be passed to cutData e.g. hemisphere = "southern"

27.3 Example of use
The function can be called very simply and only requires two numeric fields to compare.
To show how the function works, some synthetic data will be generated for 5models.

observations; 100 random numbers
set.seed(10)
obs <- 100 * runif(100)
mod1 <- data.frame(obs, mod = obs + 10, model = "model 1")
mod2 <- data.frame(obs, mod = obs + 20 * rnorm(100), model = "model 2")
mod3 <- data.frame(obs, mod = obs - 10 * rnorm(100), model = "model 3")
mod4 <- data.frame(obs, mod = obs/2 + 10 * rnorm(100), model = "model 4")
mod5 <- data.frame(obs, mod = obs * 1.5 + 3 * rnorm(100), model = "model 5")
modData <- rbind(mod1, mod2, mod3, mod4, mod5)
head(modData)

obs mod model
1 50.748 60.75 model 1
2 30.677 40.68 model 1
3 42.691 52.69 model 1
4 69.310 79.31 model 1
5 8.514 18.51 model 1
6 22.544 32.54 model 1

Wenow have a data framewith observations and predictions for 5models. The evalu-
ation of the statistics is given by:

185

27 Model evaluation— the modStats function

modStats(modData, obs = "obs", mod = "mod", type = "model")

model n FAC2 MB MGE NMB NMGE RMSE r IOA
1 model 1 100 0.89 10.0000 10.000 0.22456 0.2246 10.000 1.0000 0.7691
2 model 2 100 0.79 0.9224 16.592 0.02071 0.3726 19.318 0.8258 0.6170
3 model 3 100 0.88 1.0136 7.887 0.02276 0.1771 9.451 0.9371 0.8179
4 model 4 100 0.56 -20.6037 21.861 -0.46267 0.4909 25.759 0.8143 0.4953
5 model 5 100 0.96 22.5217 22.569 0.50574 0.5068 26.133 0.9964 0.4790

It is possible to rank the statistics based on the Index of Agreement, which is a good
general indicator of model performance.

modStats(modData, obs = "obs", mod = "mod", type = "model", rank.name = "model")

model n FAC2 MB MGE NMB NMGE RMSE r IOA
3 model 3 100 0.88 1.0136 7.887 0.02276 0.1771 9.451 0.9371 0.8179
1 model 1 100 0.89 10.0000 10.000 0.22456 0.2246 10.000 1.0000 0.7691
2 model 2 100 0.79 0.9224 16.592 0.02071 0.3726 19.318 0.8258 0.6170
4 model 4 100 0.56 -20.6037 21.861 -0.46267 0.4909 25.759 0.8143 0.4953
5 model 5 100 0.96 22.5217 22.569 0.50574 0.5068 26.133 0.9964 0.4790

The modStats function is however muchmore flexible than indicated above. While it
is useful to calculatemodel evaluation statistics in a straightforwardway it can bemuch
more informative to consider the statistics split by different periods.
Data have been assembled from aDefra model evaluation exercise which consists of

hourlyO3 predictions at 15 receptor points around theUK for 2006. The aim here is not toidentify a particularmodel that is “best” and for this reason themodels are simply referred
to as ‘model 1’, ‘model 2’ and so on. Wewill aim tomake the datamore widely available.
However, data set has this form:

load("̃ /openair/Data/modelData.RData")
head(modTest)

site date o3 mod group
1 Aston.Hill 2006-01-01 00:00:00 NA NA model 1
2 Aston.Hill 2006-01-01 01:00:00 74 65.28 model 1
3 Aston.Hill 2006-01-01 02:00:00 72 64.64 model 1
4 Aston.Hill 2006-01-01 03:00:00 72 64.46 model 1
5 Aston.Hill 2006-01-01 04:00:00 70 64.88 model 1
6 Aston.Hill 2006-01-01 05:00:00 66 65.80 model 1

There are columns representing the receptor location (site), the date, measured values
(o3), model predictions (mod) and the model itself (group). There are numerous ways in
which the statistics can be calculated. However, of interest here is how themodels perform
at a single receptor by season. The seasonal nature ofO3 is a very important characteristicand it is worth considering inmore detail. The statistics are easy enough to calculate as
shown below. In this example a subset of the data is selected to consider only the Harwell
site. Second, the type option is used to split the calculations by season andmodel. Finally
the statistics are grouped by the IOA for each season. It is now very easy how model
performance changes by season andwhichmodels perform best in each season.

186

27 Model evaluation— the modStats function

options(digits = 2) ## don't display too many decimal places
modStats(subset(modTest, site == "Harwell"), obs = "o3", mod = "mod",

type = c("season", "group"), rank = "group")

season group n FAC2 MB MGE NMB NMGE RMSE r IOA
1 spring (MAM) model 1 1905 0.88 8.58 16.5 0.137 0.26 22 0.58 0.54
2 spring (MAM) model 4 1905 0.88 -2.04 16.8 -0.032 0.27 22 0.45 0.53
3 spring (MAM) model 3 1905 0.87 11.90 17.7 0.190 0.28 24 0.52 0.50
4 spring (MAM) model 2 1905 0.88 4.98 18.1 0.079 0.29 24 0.36 0.49
5 spring (MAM) model 8 1905 0.87 10.77 19.5 0.172 0.31 24 0.59 0.45
6 spring (MAM) model 6 1825 0.82 7.79 20.0 0.123 0.32 26 0.48 0.44
7 spring (MAM) model 7 1905 0.79 -13.70 21.4 -0.218 0.34 26 0.53 0.40
8 spring (MAM) model 5 1905 0.73 -13.39 24.3 -0.213 0.39 30 0.31 0.32
9 spring (MAM) model 9 1905 0.74 1.01 24.9 0.016 0.40 33 0.26 0.30
10 summer (JJA) model 1 2002 0.92 3.83 15.5 0.063 0.26 21 0.75 0.66
11 summer (JJA) model 7 2002 0.92 7.01 15.7 0.116 0.26 21 0.80 0.65
12 summer (JJA) model 3 2002 0.89 14.02 18.3 0.232 0.30 24 0.80 0.60
13 summer (JJA) model 2 2002 0.90 7.16 18.7 0.118 0.31 25 0.64 0.59
14 summer (JJA) model 4 2002 0.90 10.01 19.0 0.165 0.31 24 0.72 0.58
15 summer (JJA) model 6 1917 0.85 11.35 22.3 0.186 0.37 27 0.67 0.51
16 summer (JJA) model 9 2002 0.79 1.39 24.8 0.023 0.41 34 0.30 0.45
17 summer (JJA) model 5 2002 0.80 1.78 24.8 0.029 0.41 32 0.27 0.45
18 summer (JJA) model 8 2002 0.84 25.60 27.6 0.423 0.46 32 0.81 0.39
19 autumn (SON) model 1 2172 0.87 4.67 12.7 0.095 0.26 17 0.68 0.61
20 autumn (SON) model 7 2172 0.85 -5.95 13.0 -0.121 0.26 16 0.69 0.60
21 autumn (SON) model 2 2172 0.88 2.61 14.2 0.053 0.29 18 0.49 0.56
22 autumn (SON) model 4 2172 0.82 7.63 16.8 0.155 0.34 22 0.41 0.49
23 autumn (SON) model 6 2081 0.80 10.02 17.5 0.202 0.35 22 0.54 0.46
24 autumn (SON) model 3 2172 0.83 14.17 17.6 0.287 0.36 23 0.56 0.46
25 autumn (SON) model 5 2172 0.80 7.05 18.1 0.143 0.37 25 0.29 0.44
26 autumn (SON) model 8 2170 0.84 13.79 18.4 0.280 0.37 23 0.66 0.43
27 autumn (SON) model 9 2172 0.76 5.65 19.1 0.115 0.39 25 0.44 0.41
28 winter (DJF) model 1 1847 0.80 -1.85 9.6 -0.040 0.21 12 0.89 0.79
29 winter (DJF) model 3 2117 0.77 -1.97 10.8 -0.043 0.24 14 0.85 0.76
30 winter (DJF) model 8 2117 0.70 -3.01 11.1 -0.066 0.24 15 0.89 0.76
31 winter (DJF) model 6 1915 0.69 0.66 14.6 0.014 0.32 20 0.75 0.68
32 winter (DJF) model 2 2117 0.76 -4.88 14.6 -0.107 0.32 18 0.76 0.68
33 winter (DJF) model 4 2117 0.72 -1.04 16.3 -0.023 0.36 21 0.66 0.64
34 winter (DJF) model 9 2110 0.54 -7.65 18.3 -0.168 0.40 25 0.73 0.60
35 winter (DJF) model 5 2117 0.66 -8.67 19.1 -0.190 0.42 24 0.57 0.58
36 winter (DJF) model 7 2117 0.39 -23.14 23.5 -0.507 0.51 28 0.81 0.49

Note that it is possible to read the results of the modStats function into a data frame,
which then allows the results to be plotted. This is generally a good ideawhen there is a
lot of numeric data to consider and plots will convey the information better.
The modStats function is much more flexible than indicated above and can be used

in lots of interesting ways. The type option in particular makes it possible to split the
statistics in numerous ways. For example, to summarise the performance of models by
site, model and day of the week:

modStats(modStats, obs = "o3", mod = "mod", type = c("site", "weekday",
"group"), rank = "group")

Similarly, if other data are available e.g. meteorological data or other pollutant species
then these variables can also be used to test models against ranges in their values. This
capability is potentially very useful because it allows for a much more probing analysis
intomodel evaluation. For example, with wind speed and direction it is easy to consider
howmodel performance varies by wind speed intervals or wind sectors, both of which
could reveal important performance characteristics.

187

28 Model evaluation— the TaylorDiagram function

TaylorDiagram(modTest, obs = "o3", mod = "mod", group = "group")

standard deviation

st
an

da
rd

 d
ev

ia
tio

n

10

20

30

10 20 30
0

centred

RMS error

10

centred

RMS error

20

centred

RMS error

30

centred

RMS error0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.8

0.9

0.95

0.99

correlation

observed

group

model 1
model 2
model 3
model 4
model 5
model 6
model 7
model 8
model 9

Figure 92:An example of the use of the TaylorDiagram function.

28 Model evaluation— the TaylorDiagram function
28.1 Purpose

The Taylor Diagram is one of the more useful methods for evaluating model perform-
ance. Details of the diagramcanbe found at http://www-pcmdi.llnl.gov/about/staff/
Taylor/CV/Taylor_diagram_primer.pdf and in Taylor (2001). The diagram provides a
way of showing how three complementarymodel performance statistics vary simultan-
eously. These statistics are the correlation coefficient R, the standard deviation (sigma)
and the (centred) root-mean-square error. These three statistics can be plotted on one
(2D) graph because of the way they are related to one another which can be represented
through the Law of Cosines.
The openair version of the Taylor Diagram has several enhancements that increase its

flexibility. In particular, the straightforwardway of producing conditioning plots should
prove valuable under many circumstances (using the type option). Many examples of
Taylor Diagrams focus on model-observation comparisons for several models using all
the available data. However, more insight can be gained into model performance by
partitioning the data in various ways e.g. by season, daylight/nighttime, day of theweek,
by levels of a numeric variable e.g. wind speed or by land-use type etc.
We first show a diagram and then pick apart the different components to understand

how to interpret it. The diagram can look overly complex but once it is understood how to
interpret the threemain characteristics it becomesmuch easier to understand. A typical
diagram is shown in Figure 92 for nine anonymisedmodels used for predicting hourly O3concentrations at 15 sites around the UK.
The plots shown in Figure 93 break the Taylor Diagrams into three components to

aid interpretation. The first plot (top left) highlights the comparison of variability in
for each model compared with the measurements. The variability is represented by
the standard deviation of the observed and modelled values. The plot shows that the
observed variability (given by the standard deviation) is about 27 (µgm−3) and is marked
as “observed” on the x-axis. The magnitude of the variability is measured as the radial

188

http://www-pcmdi.llnl.gov/about/staff/Taylor/CV/Taylor_diagram_primer.pdf
http://www-pcmdi.llnl.gov/about/staff/Taylor/CV/Taylor_diagram_primer.pdf

28 Model evaluation— the TaylorDiagram function

distance from the origin of the plot (the red line with the arrow shows the standard
deviation for model g , which is about 25 µgm−3). To aid interpretation the radial dashed
line is shown from the “observed” point. Eachmodel is shown in this case by the position
of the letters a to i. On this basis it can be seen that models 1, a, b havemore variability
than themeasurements (because they extend beyond the dashed line), whereas the others
have less variability than themeasurements. Models a and b are also closed to the dashed
line and therefore have the closest variability comparedwith the observations.
The next statistic to consider is the correlation coefficient, R shown by the top-right

Figure in Figure 93. This is shown on the arc and points that lie closest to the x-axis have
the highest correlation. The grey lines help to show this specific correlation coefficients.
The red arc showsR=0.7 for model g . The best performingmodels with the highestR are
models b and g with correlation coefficients around 0.7. Twomodels stand out as having
muchworse correlations with the observations: models e and i (values of around 0.4).
Finally, the lower plot in Figure 93 highlights the centred root-mean square error (RMS).

It is centred because the mean values of the data (observations and predictions) are
subtracted first. The concentric dashed lines emanating from the “observed” point show
the value of the RMS error— so points furthest from the “observed” value are theworst
performing models because they have the highest RMS errors. On this basis, model g
has the lowest error of about 20 µgm−3, shown again by the red line. Models e and i are
considerably worse because they have RMS errors of around 30 µgm−3.
Sowhichmodel is best? Taken as awhole it is probablymodel g because it has reasonably

similar variability comparedwith the observations, the highest correlation and the least
RMS error. However, models f and b also look to be good. Perhaps it is easier to conclude
that models e and i are not good
Note that in cases where there is a column “site” it makes sense to use type = “site”

to ensure that the statistics are calculated on a per site basis and each panel represents a
single site.

28.2 Options available
mydata A data frameminimally containing a column of observations and a column of

predictions.
obs A column of observations with which the predictions (mod) will be compared.
mod A column of model predictions. Note, mod can be of length 2 i.e. two lots

of model predictions. If two sets of predictions are are present e.g. mod
= c("base", "revised"), then arrows are shown on the Taylor Diagram
which show the change inmodel performance in going from the first to the
second. This is useful where, for example, there is interest in comparing how
onemodel run compares with another using different assumptions e.g. input
data or model set up. See examples below.

group The group column is used to differentiate between different models and can
be a factor or character. The total number of models compared will be equal
to the number of unique values of group.

type type determines how the data are split i.e. conditioned, and then plotted.
The default is will produce a single plot using the entire data. Type can be one
of the built-in types as detailed in cutData e.g. "season", "year", "weekday"
and so on. For example, type = "season"will produce four plots — one for
each season.

189

28 Model evaluation— the TaylorDiagram function

standard deviation

st
an

da
rd

 d
ev

ia
tio

n

10

20

30

10 20 30

SD

(a) Taylor Diagram highlighting the variation in stand-
ard deviation.

standard deviation

st
an

da
rd

 d
ev

ia
tio

n

10

20

30

10 20 30

(b) Taylor Diagram highlighting the variation in correla-
tion coefficient.

standard deviation

st
an

da
rd

 d
ev

ia
tio

n

10

20

30

10 20 30

(c) Taylor Diagram highlighting the variation in the
centred RMS error.

Figure 93: Taylor Diagrams broken down to highlight how to interpret the three main
statistics. The red line/arrow indicate how to read interpret each of the three
statistics.

190

28 Model evaluation— the TaylorDiagram function

It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable,
then those categories/levels will be used directly. This offers great flexibility
for understanding the variation of different variables and how they depend
on one another.
Type can be up length two e.g. type = c("season", "weekday")will pro-
duce a 2x2 plot split by season and day of theweek. Note, when two types
are provided the first forms the columns and the second the rows.
Note that often it will make sense to use type = "site"whenmultiple sites
are available. This will ensure that each panel contains data specific to an
individual site.

normalise Should the data be normalised by dividing the standard deviation of the
observations? The statistics can be normalised (and non-dimensionalised)
by dividing both the RMS difference and the standard deviation of the mod
values by the standard deviation of the observations (obs). In this case the
"observed" point is plotted on the x-axis at unit distance from the origin. This
makes it possible to plot statistics for different species (maybewith differ-
ent units) on the same plot. The normalisation is done by each group/type
combination.

cols Colours to be used for plotting. Useful options for categorical data are avil-
able from RColorBrewer colours — see the openair openColours function
for more details. Useful schemes include "Accent", "Dark2", "Paired", "Pas-
tel1", "Pastel2", "Set1", "Set2", "Set3" — but see ?brewer.pal for the max-
imum useful colours in each. For user defined the user can supply a list
of colour names recognised by R (type colours() to see the full list). An
example would be cols = c("yellow", "green", "blue").

rms.col Colour for centred-RMS lines and text.
cor.col Colour for correlation coefficient lines and text.
arrow.lwd Width of arrow usedwhen used for comparing twomodel outputs.
key Should the key be shown?
key.title Title for the key.
key.columns Number of columns to be used in the key. With many pollutants a single

column canmake to key toowide. The user can thus choose to use several
columns by setting columns to be less than the number of pollutants.

key.pos Position of the key e.g. "top", "bottom", "left" and "right". See details in
lattice:xyplot for more details about finer control.

strip Should a strip be shown?
auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically

try and format pollutant names and units properly e.g. by subscripting the ‘2’
in NO2.

191

28 Model evaluation— the TaylorDiagram function

... Other graphical parameters are passed onto cutData and lattice:xyplot.
For example, TaylorDiagram passes the option hemisphere = "southern"
on tocutData toprovide southern (rather thandefault northern) hemisphere
handling of type = "season". Similarly, common graphical parameters, such
as layout for panel arrangement and pch and cex for plot symbol type and
size, are passed on to xyplot. Most are passed unmodified, although there
are some special cases where openairmay locally manage this process. For
example, common axis and title labelling options (such as xlab, ylab, main)
are passed via quickText to handle routine formatting.

28.3 Example of use
The example used here carries on from the previous section using data from aDeframodel
evaluation exercise. As mentioned previously, the use of the type option offers enormous
flexibility for comparingmodels. However, wewill only focus on the seasonal evaluation
of the models. In the call below, group is the column that identified themodel and type
is the conditioning variable that produces in this case four panels — one for each season.
Note that in this case we focus on a single site.
Figure 94 contains a lot of useful information. Consider the summertime comparison

first. All models tend to underestimate the variability of O3 concentrations because theyall lies withing the black dashed line. However, models 7 and 9 are close to the observed
variability. The general underestimate of the variability for summertime conditions might
reflect that themodels do not adequately capture regional O3 episodes when concentra-tions are high. Models 7 and 8 do best in terms of high correlation with themeasurements
(around 0.8) and lowest RMS error (around 20–22 µgm−3). Models 3, 5 and 6 tend to do
worse on all three statistics during the summer.
By contrast, during wintertime conditions models 1 and 3 are clearly best. From an

evaluation perspective it would be useful to understandwhy somemodels are better for
wintertime conditions and others better in summer and this is clearly something that could
be investigated further.
There aremany other useful comparisons that can be undertaken easily. A few of these

are shown below, but not plotted.
by receptor comparison
TaylorDiagram(modTest, obs = "o3", mod = "mod", group = "group", type = "site")

by month comparison for a SINGLE site
TaylorDiagram(subset(modTest, site == "Harwell"), obs = "o3", mod = "mod",

group = "group", type = "month")

By season AND daylight/nighttime
TaylorDiagram(subset(modTest, site == "Harwell"), obs = "o3", mod = "mod",

group = "group", type = c("season", "daylight"))

192

29 Model evaluation— the conditionalQuantile and conditionalEval functions

select a single site
LH <- subset(modTest, site == "Lullington.Heath")
TaylorDiagram(LH, obs = "o3", mod = "mod", group = "group", type = "season")

standard deviation

st
an

da
rd

 d
ev

ia
tio

n

10

20

30

40

0

centred

RMS error

10

centred

RMS error

20

centred

RMS error

30

centred

RMS error

40

centred

RMS error0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.8

0.9

0.95

0.99

correlation

observed

spring (MAM)

10 20 30 40

0

centred

RMS error

10

centred

RMS error

20

centred

RMS error

30

centred

RMS error

40

centred

RMS error0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.8

0.9

0.95

0.99

correlation

observed

summer (JJA)

10 20 30 40
0

centred

RMS error

10

centred

RMS error

20

centred

RMS error

30

centred

RMS error

40

centred

RMS error0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.8

0.9

0.95

0.99

correlation

observed

autumn (SON)

10

20

30

40

0

centred

RMS error

10

centred

RMS error

20

centred

RMS error

30

centred

RMS error

40

centred

RMS error0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.8

0.9

0.95

0.99

correlation

observed

winter (DJF)

group

model 1
model 2
model 3
model 4
model 5
model 6
model 7
model 8
model 9

Figure 94:Use of the TaylorDiagam function to showmodel performance for 9 models
used to predict O3 concentrations at the Lullington Heath site.

29 Model evaluation— the conditionalQuantile and
conditionalEval functions

29.1 Purpose
Conditional quantiles are a very useful way of considering model performance against ob-
servations for continuousmeasurementsWilks (2005). The conditional quantile plot splits
the data into evenly spaced bins. For each predicted value bin e.g. from 0 to 10 µg m−3

the corresponding values of the observations are identified and themedian, 25/75th and
10/90 percentile (quantile) calculated for that bin. The data are plotted to show how these
values vary across all bins. For a time series of observations and predictions that agree
precisely themedian value of the predictions will equal that for the observations for each
bin.
The conditional quantile plot differs from the quantile-quantile plot (Q-Q plot) that is

often used to compare observations and predictions. A Q-Q plot separately considers

193

29 Model evaluation— the conditionalQuantile and conditionalEval functions

the distributions of observations and predictions, whereas the conditional quantile uses
the corresponding observations for a particular interval in the predictions. Take as an
example two time series, the first a series of real observations and the second a lagged
time series of the same observations representing the predictions. These two time series
will have identical (or very nearly identical) distributions (e.g. samemedian, minimum and
maximum). AQ-Q plot would show a straight line showing perfect agreement, whereas
the conditional quantile will not. This is because in any interval of the predictions the
corresponding observations now have different values.
Plotting the data in this way shows howwell predictions agreewith observations and

can help reveal many useful characteristics of how well model predictions agree with
observations — across the full distribution of values. A single plot can therefore convey a
considerable amount of information concerningmodel performance. The basic function
is considerably enhanced by allowing flexible conditioning easily e.g. to evaluatemodel
performance by season, day of the week and so on, as in other openair functions.

29.2 Options available
mydata A data frame containing the field obs and mod representing observed and

modelled values.
obs The name of the observations in mydata.
mod The name of the predictions (modelled values) in mydata.
type type determines how the data are split i.e. conditioned, and then plotted.

The default is will produce a single plot using the entire data. Type can be one
of the built-in types as detailed in cutData e.g. "season", "year", "weekday"
and so on. For example, type = "season"will produce four plots — one for
each season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable,
then those categories/levels will be used directly. This offers great flexibility
for understanding the variation of different variables and how they depend
on one another.
Type can be up length two e.g. type = c("season", "weekday")will pro-
duce a 2x2 plot split by season and day of theweek. Note, when two types
are provided the first forms the columns and the second the rows.

bins Number of bins to be used in calculating the different quantile levels.
min.bin Theminimum number of points required for the estimates of the 25/75th

and 10/90th percentiles.
xlab label for the x-axis, by default "predicted value".
ylab label for the y-axis, by default "observed value".
col Colours to be used for plotting the uncertainty bands andmedian line. Must

be of length 5 ormore.
key.columns Number of columns to be used in the key.
key.position Location of the key e.g. "top", "bottom", "right", "left". See lattice xyplot

for more details.

194

29 Model evaluation— the conditionalQuantile and conditionalEval functions

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels etc. will automat-
ically try and format pollutant names and units properly e.g. by subscripting
the ‘2’ in NO2.

... Other graphical parameters passed onto cutData and lattice:xyplot. For
example, conditionalQuantilepasses theoptionhemisphere = "southern"
on tocutData toprovide southern (rather thandefault northern) hemisphere
handling of type = "season". Similarly, common axis and title labelling op-
tions (such asxlab, ylab, main) are passed toxyplot viaquickText to handle
routine formatting.

29.3 Example of use
To make things more interesting we will use data from a model evaluation exercise or-
ganised byDefra in 2010/2011. A large number of models were evaluated as part of the
evaluation but we only consider hourly ozone predictions from the CMAQmodel being
used at King’s College London.
First the data are loaded:
load("̃ /openair/Data/CMAQozone.RData")
head(CMAQ.KCL)

site date o3 rollingO3Meas mod rollingO3Mod group
1 Aston.Hill 2006-01-01 00:00:00 NA NA 93 NA CMAQ.KCL
2 Aston.Hill 2006-01-01 01:00:00 74 NA 92 NA CMAQ.KCL
3 Aston.Hill 2006-01-01 02:00:00 72 NA 92 NA CMAQ.KCL
4 Aston.Hill 2006-01-01 03:00:00 72 NA 92 NA CMAQ.KCL
5 Aston.Hill 2006-01-01 04:00:00 70 NA 92 NA CMAQ.KCL
6 Aston.Hill 2006-01-01 05:00:00 66 NA 92 NA CMAQ.KCL

The data consists of hourly observations of O3 in µg m−3 at 15 rural O3 sites in theUK together with predicted values.15 First of all we consider O3 predictions across allsites to help illustrate the purpose of the function. The results are shown in Figure 95. An
explanation of the Figure is given in its caption.
A more informative analysis can be undertaken by considering conditional quantiles

separately by site, which is easily done using the type option. The results are shown in
Figure 96. It is now easier to see where themodel performs best and how it varies by site
type. For example, at a remote site in Scotland like Strath Vaich it is clear that themodel
does not capture either the lowest or highest O3 concentrations very well.

15We thankDr Sean Beevers andDr Nutthida Kitwiroon for access to these data.

195

29 Model evaluation— the conditionalQuantile and conditionalEval functions

conditionalQuantile(CMAQ.KCL, obs = "o3", mod = "mod")

predicted value

50 100 150 200 250

50

100

150

200

250

0

10000

20000

30000

sa
m

pl
e

si
ze

 fo
r

hi
st

og
ra

m
s

25/75th percentile
10/90th percentile

median
perfect model

ob
se

rv
ed

 v
al

ue

Figure 95: Example of the use of conditional quantiles applied to the KCL CMAQmodel
for 15 rural O3monitoring sites in 2006, for hourly data. The blue line showsthe results for a perfectmodel. In this case the observations cover a range from
0 to 270 µgm−3. The red line shows themedian value of the predictions. The
maximum predicted value is 125 µg m−3, somewhat less than the maximum
observed value. The shading shows the predicted quantile intervals i.e. the
25/75th and the 10/90th. A perfect model would lie on the blue line and have
a very narrow spread. There is still some spread because even for a perfect
model a specific quantile interval will contain a range of values. However, for
the number of bins used in this plot the spreadwill be very narrow. Finally, the
histogram shows the counts of predicted values.

196

29 Model evaluation— the conditionalQuantile and conditionalEval functions

conditionalQuantile(CMAQ.KCL, obs = "o3", mod = "mod", type = "site")

predicted value

50

100

150

200

250

Aston.Hill

50 100 150 200 250

Bottesford Bush.Estate

50 100 150 200 250

0

1000

2000

3000

4000

Eskdalemuir

50

100

150

200

250

Glazebury High.Muffles Harwell

0

1000

2000

3000

4000

Ladybower

50

100

150

200

250

Lullington.Heath Lough.Navar Rochester

0

1000

2000

3000

4000

Sibton

50 100 150 200 250

50

100

150

200

250

Strath.Vaich Yarner.Wood

50 100 150 200 250

0

1000

2000

3000

4000

Wicken.Fen

sa
m

pl
e

si
ze

 fo
r

hi
st

og
ra

m
s

25/75th percentile
10/90th percentile

median
perfect model

ob
se

rv
ed

 v
al

ue

Figure 96:Conditional quantiles by site for 15O3monitoring sites in the UK.

197

29 Model evaluation— the conditionalQuantile and conditionalEval functions

conditionalQuantile(subset(CMAQ.KCL, site == "Lullington.Heath"), obs = "o3",
mod = "mod", type = "season")

predicted value

50

100

150

200

spring (MAM)

50 100 150 200

0

200

400

600

800

summer (JJA)

50 100 150 200

50

100

150

200

autumn (SON)

0

200

400

600

800

winter (DJF)

sa
m

pl
e

si
ze

 fo
r

hi
st

og
ra

m
s

25/75th percentile
10/90th percentile

median
perfect model

ob
se

rv
ed

 v
al

ue

Figure 97:Conditional quantiles at Lullington Heath conditioned by season.

Aswith other openair functions, the ability to consider conditioning can really helpwith
interpretation. For example, what do the conditional quantiles at Lullington Heath (in
south-east England) look like by season? This is easily done by subsetting the data to select
that site and setting the type to be “season”, as shown in Figure 97. These results show
that winter predictions have good coverage i.e. with width of the blue “perfect model”
line is the same as the observations. However, the predictions tend to be somewhat
lower than observations for most concentrations (themedian line is below the blue line) —
and thewidth of the 10/75th and 10/90th percentiles is quite broad. However, the area
where themodel is less good is in summer and autumn because the predictions have low
coverage (the red line only covers less than half of the observation line and thewidth of
the percentiles is wide).
Of course it is also easy to plot by hour of the day, day of theweek, by daylight/nighttime

and so on — easily. All these approaches can help better understandwhy a model does
not perform very well rather than just quantifying its performance. Also, these types of
analysis are particularly useful when more than one model is involved in a comparison
as in the recent Deframodel evaluation exercise, which wewill come back to later when
some of the results are published.

198

30 The calcFno2 function—estimating primary NO2 fractions

30 The calcFno2 function—estimating primary NO2 fractions
30.1 Purpose

see also
linearRelation
for oxidant

slopes if NOx ,
NO2 andO3are available

Recent research has shown that emissions of directly emitted (primary) NO2 from roadvehicles have increased and these increases have had important effects on concentrations
of NO2 (Carslaw, 2005; Carslaw and Beevers, 2004; Carslaw and Carslaw, 2007). Manyorganisations would like to quantify the level of primary NO2 from the analysis of ambientmonitoring data to help with their air quality management responsibilities. The difficulty
is that this is not a straightforward thing to do – it requires some form of modelling. In
some situations where NO, NO2 andO3 aremeasured, it is possible to derive an estimateof the primary NO2 fraction by considering the gradient in “total oxidant” defined asNO2 +O3 (Clapp and Jenkin, 2001).16 However, where wemost want to estimate primaryNO2 (roadside sites), O3 is rarely measured and an alternative approach must be used.One approach is using a simple constrained chemistrymodel described in (Carslaw and
Beevers, 2005). The calcFno2method is based on this work but makes a few simplifying
assumptions tomake it easier to code.
There are several assumptions that users should be aware of when using this function.

First, it is most reliable at estimating f-NO2 when the roadside concentration is muchgreater than the background concentration. Second, it is best if the chosen background
site is reasonably close to the roadside site and not greatly affected by local sources
(which it should not be as a background site). The way the calculations work is to try and
distinguish betweenNO2 that is directly emitted from vehicles and that derived throughthe reaction betweenNO andO3. During summertime periods when concentrations ofNOx are lower these two influences tend to vary linearly with NOx , making it difficult forthemethod to separate them. It can often be useful to select only winter months under
these situations (or at least October–March). Therefore, as a simplifying assumption, the
time available for chemical reactions to take place, τ , is set to 60 seconds. We have tested
themethod at roadside sites whereO3 is alsomeasured and τ = 60 s seems to provide areasonably consistent calculation of f-NO2.Note that in some situations it may beworth filtering the data e.g. by wind direction to
focus on the road itself. In this respect, the polarPlot function described on page 101 can
be useful.

30.2 Options available
input A data framewith the following fields. nox andno2 (roadside NOX andNO2

concentrations), back_nox, back_no2 and back_o3 (hourly background con-
centrations of each pollutant). In addition temp (temperature in degrees
Celsius) and cl (cloud cover in Oktas). Note that if temp and cl are not
available, typical means values of 11 deg. C and cloud = 3.5 will be used.

tau Mixing time scale. It is unlikely the user will need to adjust this. See details
below.

user.fno2 User-supplied f-NO2 fraction e.g. 0.1 is a NO2/NOX ratio of 10 applied to
the whole time series and is useful for testing "what if" questions.

main Title of plot if required.
xlab x-axis label.
16Note that the volume fraction of NO2 of total NOx is termed f-NO2. See the AQEG report for moreinformation (AQEG, 2008).

199

30 The calcFno2 function—estimating primary NO2 fractions

... Other graphical parameters send to scatterPlot.

30.3 Example of use
We apply the technique to roadside data atMarylebone Road, with additional data from a
nearby background site at North Kensington and appropriatemeteorological variables.
The data can be downloaded from the openairwebsite (http://www.openair-project.
org), and remember to change the file path below. The code run is:17

load("̃ /openair/Data/f-no2Data.RData")
check first few lines of the file
head(fno2Data)

date nox no2 back_nox back_no2 back_o3 temp cl wd
1 01/01/1998 00:00 285 39 49 34 1 3.3 2 280
2 01/01/1998 01:00 NA NA 56 35 0 3.3 5 230
3 01/01/1998 02:00 NA NA 41 31 4 4.4 5 190
4 01/01/1998 03:00 493 52 52 33 1 3.9 5 170
5 01/01/1998 04:00 468 78 41 30 3 3.9 5 180
6 01/01/1998 05:00 264 42 36 29 6 3.3 2 190

Now apply the function, and collect the results as shown in Figure 98, with additional
options that are sent to scatterPlot.
Note that this is a different way to run a function comparedwith what has been done

previously. This time the results are read into the variable results, which stores the
monthly mean estimated f-NO2 values.The results (expressed as a percentage) for f-NO2 are then available for any otherprocessing or plotting. The function also automatically generates a plot of monthly mean
f-NO2 values as shown in Figure 98. It is clear from this Figure that f-NO2 was relativelystable at around 10% until the end of 2002, before increasing sharply during 2003 – and
remaining at about 20 % until the end of 2007. At this particular site the increases in
f-NO2 are very apparent.An interesting question is whatwouldNO2 concentrations have been if f-NO2 remainedat the 10% level, or indeed any other level. The calcFno2 function also allows the user to
input their own f-NO2 level andmake new predictions. In this case the code run is slightlydifferent, shown in Figure 99.
By providing a value to the option user.fno2 (expressed as a fraction), the function

will automatically calculate NO2 concentrations with the chosen f-NO2 value applied tothe whole time series. In this case resultswill return a data framewith dates andNO2concentrations. In addition a plot is produced as shown in Figure 99. The blue line and
shading show the measured data and highlight a clear increase in NO2 concentrationsfrom 2003 onwards. The red line and shading shows the predicted values assuming (in
this case) that f-NO2 was constant at 0.095. Based on these results it is clear that NO2concentrations would have been substantially less if it were not for the recent increases in
f-NO2.

17Note that the choice to give the plot a heading is optional.

200

http://www.openair-project.org
http://www.openair-project.org

30 The calcFno2 function—estimating primary NO2 fractions

results <- calcFno2(fno2Data, main = "Trends in f-NO2 at Marylebone Road",
pch = 16, smooth = TRUE, cex = 1.5)

date

f−
N

O
2

(%
)

5

10

15

20

25

1998 2000 2002 2004 2006

the results are a list of two data frame, the first is the f-NO2 results:

head(results$data[[1]])

date fno2
1.1998 1998-01-01 8.9
2.1998 1998-02-01 9.2
3.1998 1998-03-01 10.1
4.1998 1998-04-01 9.7
5.1998 1998-05-01 10.3
6.1998 1998-06-01 10.6

the second are the hourly nox, no2 and estimated o3:
head(results$data[[2]])

date nox no2 o3
1 1998-01-01 00:00:00 285 56 0.19
2 1998-01-01 03:00:00 493 73 0.11
3 1998-01-01 04:00:00 468 71 0.35
4 1998-01-01 05:00:00 264 54 1.23
5 1998-01-01 06:00:00 171 47 0.92
6 1998-01-01 07:00:00 195 51 2.18

Figure 98: Plot from the application of the calcFno2 function applied toMaryleboneRoad.
The plot shows a smooth fit with 95% confidence intervals.

201

31 Utility functions

results <- calcFno2(fno2Data, user.fno2 = 0.095, smooth = TRUE, pch = 16,
cex = 1.5)

date

N
O

2

40

50

60

70

1998 2000 2002 2004 2006

variable
measured
predicted

Figure 99: Plot from the application of the calcFno2 function applied toMaryleboneRoad
with a forced f-NO2 values of 0.095 over the whole series. The red line andshading shows the trend in actual measurements and the blue line and shading
the predicted trend in NO2 if the f-NO2 ratio had remained at 0.095.

31 Utility functions
31.1 Selecting data by date

Selecting by date/time in R can be intimidating for new users—and time consuming for
all users. The selectByDate function aims tomake this easier by allowing users to select
data based on the British way of expressing date i.e. d/m/y. This function should be very
useful in circumstances where it is necessary to select only part of a data frame.
The function has the following options.

mydata A data frame containing a date field in hourly or high resolution format.
start A start date string in the form d/m/yyyy e.g. "1/2/1999" or in ’R’ format i.e.

"YYYY-mm-dd", "1999-02-01"
end See start for format.
year A year or years to select e.g. year = 1998:2004 to select 1998-2004 inclus-

ive or year = c(1998, 2004) to select 1998 and 2004.
month A month or months to select. Can either be numeric e.g. month = 1:6 to

select months 1-6 (January to June), or by name e.g. month = c("January",
"December"). Names can be abbreviated to 3 letters and be in lower or
upper case.

day Adaynameorordays to select. For exampleday = c("Monday", "Wednesday").
Names can be abbreviated to 3 letters and be in lower or upper case. Also
accepts "weekday" (Monday - Friday) and "weekend" for convenience.

202

31 Utility functions

hour An hour or hours to select from 0-23 e.g. hour = 0:12 to select hours 0 to
12 inclusive.

select all of 1999
data.1999 <- selectByDate(mydata, start = "1/1/1999", end = "31/12/1999")
head(data.1999)

date ws wd nox no2 o3 pm10 so2 co pm25 split.by
8761 1999-01-01 00:00:00 5.0 140 88 35 4 21 3.8 1.02 18 before Jan. 2003
8762 1999-01-01 01:00:00 4.1 160 132 41 3 17 5.2 2.70 11 before Jan. 2003
8763 1999-01-01 02:00:00 4.8 160 168 40 4 17 6.5 2.87 8 before Jan. 2003
8764 1999-01-01 03:00:00 4.9 150 85 36 3 15 4.2 1.62 10 before Jan. 2003
8765 1999-01-01 04:00:00 4.7 150 93 37 3 16 4.2 1.02 11 before Jan. 2003
8766 1999-01-01 05:00:00 4.0 160 74 29 5 14 3.9 0.72 NA before Jan. 2003
feature new
8761 easterly 0.044
8762 easterly 0.040
8763 easterly 0.039
8764 easterly 0.049
8765 easterly 0.046
8766 other 0.052

tail(data.1999)

date ws wd nox no2 o3 pm10 so2 co pm25 split.by
17515 1999-12-31 18:00:00 4.7 190 226 39 NA 29 5.5 2.4 23 before Jan. 2003
17516 1999-12-31 19:00:00 4.0 180 202 37 NA 27 4.8 2.1 23 before Jan. 2003
17517 1999-12-31 20:00:00 3.4 190 246 44 NA 30 5.9 2.4 23 before Jan. 2003
17518 1999-12-31 21:00:00 3.7 220 231 35 NA 28 5.3 2.2 23 before Jan. 2003
17519 1999-12-31 22:00:00 4.1 200 217 41 NA 31 4.8 2.2 26 before Jan. 2003
17520 1999-12-31 23:00:00 3.2 200 181 37 NA 28 3.5 1.8 22 before Jan. 2003
feature new
17515 other 0.024
17516 other 0.024
17517 other 0.024
17518 other 0.023
17519 other 0.022
17520 other 0.019

easier way
data.1999 <- selectByDate(mydata, year = 1999)

more complex use: select weekdays between the hours of 7 am to 7 pm
sub.data <- selectByDate(mydata, day = "weekday", hour = 7:19)

select weekends between the hours of 7 am to 7 pm in winter (Dec, Jan, Feb)
sub.data <- selectByDate(mydata, day = "weekend", hour = 7:19, month = c("dec",

"jan", "feb"))

The function can be used directly in other functions. For example, tomake a polar plot
using year 2000 data:

polarPlot(selectByDate(mydata, year = 2000), pollutant = "so2")

31.2 Selecting run lengths of values above a threshold— pollution episodes
A seemingly easy thing to do that has relevance to air pollution episodes is to select run
lengths of contiguous values of a pollutant above a certain threshold. For example, one
might be interested in selecting O3 concentrations where there are at least 8 consecutive

203

31 Utility functions

hours above 90 ppb. In other words, a selection that combines both a threshold and
persistence. These periods can be very important from a health perspective and it can be
useful to study the conditions under which they occur. But how do you select such periods
easily? The selectRunning utility function has beenwritten to do this. It could be useful
for all sorts of situations e.g.
• Selecting hours where primary pollutant concentrations are persistently high— and
then applying other openair functions to analyse the data in more depth.

• In the study of particle suspension or deposition etc. it might be useful to select
hours where wind speeds remain high or rainfall persists for several hours to see
how these conditions affect particle concentrations.

• It could be useful in health impact studies to select blocks of data where pollutant
concentrations remain above a certain threshold.

The selectRunning has the following options:
mydata A data frame with a date field and at least one numeric pollutant field to

analyse.
pollutant Name of variable to process. Mandatory.
run.len Run length for extracting contiguous valuesofpollutantabove thethreshold

value.
threshold The threshold value for pollutant abovewhich data should be extracted.
As an example we are going to consider O3 concentrations at a semi-rural site in south-west London (Teddington). The data can be downloaded as follows:
ted <- importKCL(site = "td0", year = 2005:2009, met = TRUE)
see how many rows there are
nrow(ted)

We are going to contrast two polar plots of O3 concentration. The first uses all hours inthe data set, and the second uses a subset of hours. The subset of hours is defined byO3concentrations above 90 ppb for periods of at least 8-hours i.e. what might be considered
as ozone episode conditions.

episode <- selectRunning(ted, pollutant = "o3", threshold = 90, run.len = 8)
see how many rows there are
nrow(episode)

[1] 1399

Nowwe are going to produce two bivariate polar plots shown in Figure 100.
The results are shown in Figure 100. The polar plot for all data (left plot of Figure 100)

shows that the highest O3 concentrations tend to occur for highwind speed conditionsfrom almost every direction. Lower concentrations are observed for low wind speeds
because concentrations of NOx are higher, resulting in O3 destruction. By contrast, apolar plot of the episode conditions (right plot of Figure 100) is very different. In this case
there is a clear set of conditions where these criteria are met i.e. lengths of at least 8-
hours where theO3 concentration is at least 90 ppb. It is clear the highest concentrationsare dominated by south-easterly conditions i.e. corresponding to easterly flow from
continental Europewhere there has been time to theO3 chemistry to take place.

204

31 Utility functions

polarPlot(ted, pollutant = "o3", min.bin = 2)

0

2

4 wind spd.

6

8

10

W

S

N

E

mean

O3

20

30

40

50

60

70

80

90

100

polarPlot(episode, pollutant = "o3", min.bin = 2)

0

1

2 wind spd.

3

4

5

6

W

S

N

E

mean

O3

95

100

105

110

115

120

125

130

135

Figure 100: Example of using the selectRunning function to select episode hours to pro-
duce bivariate polar plots of O3 concentration.

Another interesting test plot is to consider NOx concentrations atMarylebone Road— see Figure 46, which shows that high concentrations are dominated by a swathe of
south-westerly wind conditions (even for high wind speeds). However, if a selection is
made of episode conditions (defined here as NOx concentrations>500 ppb for at least5-hours), then it can be seen that it is actually the lowwind speed conditions that dominate.
These conditions correspond to low in-canyonwind speeds and lowwind speeds across
London, which tend to elevate local and backgroundNOx concentrations. Even thoughhigh concentrations of NOx are observed at high wind speeds, it does not seem that theseconditions are as important for episode conditions. User can run the code below to verify
these observations.

episode <- selectRunning(mydata, pollutant = "nox", threshold = 800, run.len = 5)
polarPlot(episode, pollutant = "nox", min.bin = 2)

31.3 Calculating rollingmeans
Some air pollution statistics such as for O3 and particulate matter are expressed as rollingmeans and it is useful to be able to calculate these. It can also be useful to help smooth-

205

31 Utility functions

out data for clearer plotting. The rollingMean function makes these calculations. One
detail that can be important is that for some statistics amean is only considered valid if
there are a sufficient number of valid readings over the averaging period. Often there is a
requirement for at least 75 % data capture. For example, with an averaging period of 8
hours and a data capture threshold of 75%, at least 6 hours are required to calculate the
mean.
The function is called as follows; in this case to calculate 8-hour rolling mean concentra-

tions of O3.
data(mydata)
mydata <- rollingMean(mydata, pollutant = "o3", hours = 8, new.name = "rollingo3",

data.thresh = 75)
tail(mydata)

date ws wd nox no2 o3 pm10 so2 co pm25 rollingo3
65528 2005-06-23 07:00:00 1.5 250 404 156 4 49 NA 1.8 28 4.6
65529 2005-06-23 08:00:00 1.5 260 388 145 6 48 NA 1.6 26 5.0
65530 2005-06-23 09:00:00 1.5 210 404 168 7 58 NA 1.3 34 5.2
65531 2005-06-23 10:00:00 2.6 240 387 175 10 55 NA 1.3 34 5.5
65532 2005-06-23 11:00:00 3.1 220 312 125 15 52 NA 1.3 33 6.9
65533 2005-06-23 12:00:00 3.1 220 287 119 17 55 NA 1.3 35 8.5

Note that calculating rollingmeans shortens the length of the data set. In the case of
O3, no calculations aremade for the last 7 hours.Type help(rollingMean) into R formore details. Note that the function currently only
works with a single site.

31.4 Aggregating data by different time intervals
Aggregating data by different averaging periods is a common and important task. There
aremany reasons for aggregating data in this way:
1. Data sets may have different averaging periods and there is a need to combine
them. For example, the task of combining an hourly air quality data set with a 15-
minute averagemeteorological data set. The need here would be to aggregate the
15-minute data to 1-hour beforemerging.

2. It is extremely useful to consider data with different averaging times in a straight-
forward way. Plotting a very long time series of hourly or higher resolution data
can hide the main features and it would be useful to apply a specific (but flexible)
averaging period to the data for plotting.

3. Thosewhomakemeasurements during field campaigns (particularly for academic
research) may havemany instruments with a range of different time resolutions. It
can be useful to re-calculate time series with a common averaging period; or maybe
help reduce noise.

4. It is useful to calculate statistics other thanmeans when aggregating e.g. percentile
values, maximums etc.

5. For statistical analysis there can be short-term autocorrelation present. Being able
to choose a longer averaging period is sometimes a useful strategy forminimising
autocorrelation.

In aggregating data in this way, there are a couple of other issues that can be useful
to deal with at the same time. First, the calculation of proper vector-averaged wind

206

31 Utility functions

direction is essential. Second, sometimes it is useful to set a minimum number of data
points that must be present before the averaging is done. For example, in calculating
monthly averages, it may be unwise to not account for data capture if somemonths only
have a few valid points.
All these issues are (hopefully) dealt with by the timeAverage function. The options are

shown below, but as ever it is best to check the help that comes with the openair package.see also
timePlot for
plotting with

different
averaging
times and
statistics

The timeAverage function has the following options:
mydata A data frame containing a date field . Can be class POSIXct or Date.
avg.time This defines the time period to average to. Can be "sec", "min", "hour", "day",

"DSTday", "week", "month", "quarter" or "year". For much increased flexibility
a number can precede these options followed by a space. For example, a time
average of 2months would be avg.time = "2 month". See cut.POSIXt for
further details on this. In addition, avg.time can equal "season", in which
case 3-month seasonal values are calculatedwith spring defined asMarch,
April, May and so on.
Note that avg.time can be less than the time interval of the original series, in
which case the series is expanded to the new time interval. This is useful, for
example, for calculating a 15-minute time series from an hourly onewhere
an hourly value is repeated for each new 15-minute period. Note that when
expanding data in this way it is necessary to ensure that the time interval of
the original series is an exact multiple of avg.time e.g. hour to 10minutes,
day to hour.

data.thresh The data capture threshold to use (A value of zeromeans that all available
data will be used in a particular period regardless if of the number of values
available. Conversely, a value of 100will mean that all data will need to be
present for the average to be calculated, else it is recorded as NA.

statistic The statistic to apply when aggregating the data; default is themean. Can be
one of "mean", "max", "min", "median", "sum", "frequency", "sd", "percentile".
Note that "sd" is the standard deviation and "frequency" is the number (fre-
quency) of valid records in the period. "percentile" is the percentile level (
"percentile" option - see below.

percentile The percentile level in statistic = "percentile". The default is 95.
start.date A string giving a start date to use. This is sometimes useful if a time series

starts between obvious intervals. For example, for a 1-minute time series
that starts "2009-11-29 12:07:00" that needs to be averaged up to 15-
minute means, the intervals would be "2009-11-29 12:07:00", "2009-11-29
12:22:00" etc. Often, however, it is better to round down to amore obvious
start point e.g. "2009-11-29 12:00:00" such that the sequence is then "2009-
11-29 12:00:00", "2009-11-29 12:15:00" . . .start.date is therefore used to
force this type of sequence.

vector.ws Should vector averaging be carried out on wind speed if available? The
default is FALSE and scalar averages are calculated. Vector averaging of the
wind speed is carried out on the u and v wind components. For example,
consider the average of two hours where thewind direction and speed of the
first hour is 0 degrees and 2m/s and 180 degrees and 2m/s for the second
hour. The scalar average of the wind speed is simply the arithmetic average

207

31 Utility functions

= 2m/s and the vector average is 0m/s. Vector-averaged wind speeds will
always be lower than scalar-averaged values.

load in fresh version of mydata
data(mydata)

To calculate daily means from hourly (or higher resolution) data:
daily <- timeAverage(mydata, avg.time = "day")
head(daily)

date ws wd nox no2 o3 pm10 so2 co pm25
1 1998-01-01 6.8 188 154 39 6.9 18 3.2 2.7 NaN
2 1998-01-02 7.1 223 132 39 6.5 28 3.9 1.8 NaN
3 1998-01-03 11.0 226 120 38 8.4 20 3.2 1.7 NaN
4 1998-01-04 11.5 223 105 35 9.6 21 3.0 1.6 NaN
5 1998-01-05 6.6 237 175 46 5.0 24 4.5 2.1 NaN
6 1998-01-06 4.4 197 214 45 1.3 35 5.7 2.5 NaN

Monthly 95th percentile values:
monthly <- timeAverage(mydata, avg.time = "month", statistic = "percentile",

percentile = 95)
head(monthly)

date ws wd nox no2 o3 pm10 so2 co pm25
1 1998-01-01 11.2 45 371 69 14 53 11 4.0 NA
2 1998-02-01 8.2 17 524 92 7 69 17 5.6 NA
3 1998-03-01 10.6 38 417 85 15 61 18 4.9 NA
4 1998-04-01 8.2 44 384 82 20 52 15 4.2 NA
5 1998-05-01 7.6 41 300 80 25 61 13 3.6 40
6 1998-06-01 8.5 51 377 74 15 53 12 4.3 34

2-week averages but only calculate if at least 75% of the data are available:
twoweek <- timeAverage(mydata, avg.time = "2 week", data.thresh = 75)
head(twoweek)

date ws wd nox no2 o3 pm10 so2 co pm25
1 1997-12-29 7.0 212 167 41 4.6 29 4.5 2.2 NA
2 1998-01-12 4.9 221 173 42 4.7 29 5.1 1.9 NA
3 1998-01-26 2.8 242 233 51 2.3 35 8.1 2.4 NA
4 1998-02-09 4.4 215 276 57 2.6 44 9.0 2.9 NA
5 1998-02-23 6.9 237 248 57 5.0 29 9.8 2.6 NA
6 1998-03-09 3.0 288 160 45 5.6 33 8.6 1.6 NA

timeAverage also works the other way in that it can be used to derive higher temporal
resolution data e.g. hourly from daily data or 15-minute from hourly data. An example
of usagewould be the combining of daily mean particle data with hourly meteorological
data. There are twoways these two data sets can be combined: either average themet-
eorological data to daily means or calculate hourly means from the particle data. The
timeAverage function when used to ‘expand’ data in this waywill repeat the original val-
ues the number of times required to fill the new time scale. In the example below we
calculate 15-minute data from hourly data. As it can be seen, the first line is repeated four
times and so on.

208

31 Utility functions

data15 <- timeAverage(mydata, avg.time = "15 min")
head(data15, 20)

date ws wd nox no2 o3 pm10 so2 co pm25
1 1998-01-01 00:00:00 0.6 280 285 39 1 29 4.7 3.4 NA
2 1998-01-01 00:15:00 0.6 280 285 39 1 29 4.7 3.4 NA
3 1998-01-01 00:30:00 0.6 280 285 39 1 29 4.7 3.4 NA
4 1998-01-01 00:45:00 0.6 280 285 39 1 29 4.7 3.4 NA
5 1998-01-01 01:00:00 2.2 230 NA NA NA 37 NA NA NA
6 1998-01-01 01:15:00 2.2 230 NA NA NA 37 NA NA NA
7 1998-01-01 01:30:00 2.2 230 NA NA NA 37 NA NA NA
8 1998-01-01 01:45:00 2.2 230 NA NA NA 37 NA NA NA
9 1998-01-01 02:00:00 2.8 190 NA NA 3 34 6.8 9.6 NA
10 1998-01-01 02:15:00 2.8 190 NA NA 3 34 6.8 9.6 NA
11 1998-01-01 02:30:00 2.8 190 NA NA 3 34 6.8 9.6 NA
12 1998-01-01 02:45:00 2.8 190 NA NA 3 34 6.8 9.6 NA
13 1998-01-01 03:00:00 2.2 170 493 52 3 35 7.7 10.2 NA
14 1998-01-01 03:15:00 2.2 170 493 52 3 35 7.7 10.2 NA
15 1998-01-01 03:30:00 2.2 170 493 52 3 35 7.7 10.2 NA
16 1998-01-01 03:45:00 2.2 170 493 52 3 35 7.7 10.2 NA
17 1998-01-01 04:00:00 2.4 180 468 78 2 34 8.1 8.9 NA
18 1998-01-01 04:15:00 2.4 180 468 78 2 34 8.1 8.9 NA
19 1998-01-01 04:30:00 2.4 180 468 78 2 34 8.1 8.9 NA
20 1998-01-01 04:45:00 2.4 180 468 78 2 34 8.1 8.9 NA

The timePlot can apply this function directly to make it very easy to plot data with
different averaging times and statistics.

31.5 Calculating percentiles
calcPercentilemakes it straightforward to calculate percentiles for a single pollutant. It
can take account of different averaging periods, data capture thresholds — see subsec-
tion 31.4 for more details. The function has the following options:
mydata A data frame of data with a date field in the format Date or POSIXct. Must

have one variable to apply calculations to.
pollutant Name of variable to process. Mandatory.
avg.time Averaging period to use. See timeAverage for details.
percentile A vector of percentile values. For example percentile = 50 for median

values, percentile = c(5, 50, 95 for multiple percentile values.
data.thresh Data threshold to apply when aggregating data. See timeAverage for de-

tails.
start Start date to use - see timeAverage for details.
For example, to calculate the 25, 50, 75 and 95th percentiles of O3 concentration byyear:

209

31 Utility functions

calcPercentile(mydata, pollutant = "o3", percentile = c(25, 50, 75, 95),
avg.time = "year")

date percentile.25 percentile.50 percentile.75 percentile.95
1 1998-01-01 2 4 7 16
2 1999-01-01 2 4 9 21
3 2000-01-01 2 4 9 22
4 2001-01-01 2 4 10 24
5 2002-01-01 2 4 10 24
6 2003-01-01 2 4 11 24
7 2004-01-01 2 5 11 23
8 2005-01-01 3 7 16 28

31.6 The corPlot function— correlationmatrices
Understanding how different variables are related to one another is always important.
However, it can be difficult to easily develop an understanding of the relationships when
many different variables are present. One of the useful techniques used is to plot a
correlation matrix, which provides the correlation between all pairs of data. The basic
idea of a correlation matrix has been extended to help visualise relationships between
variables by Friendly (2002) and Sarkar (2007).
The corPlot shows the correlation coded in three ways: by shape (ellipses), colour and

the numeric value. The ellipses can be thought of as visual representations of scatter plot.
With a perfect positive correlation a line at 45 degrees positive slope is drawn. For zero
correlation the shape becomes a circle – imagine a “fuzz” of points with no relationship
between them.
Withmany different variables it can be difficult to see relationships between variables

i.e. which variables tend to behave most like one another. For this reason hierarchical
clustering is applied to the correlationmatrices to group variables that are most similar to
one another (if cluster = TRUE.)
It is also possible to use the openair type option to condition the data inmany flexible

ways, although this may become difficult to visualise with toomany panels.
The corPlot function has the following options:

mydata A data framewhich should consist of some numeric columns.
pollutants the names of data-series in mydata to be plotted by corPlot. The default

option NULL and the alternative "all" use all available valid (numeric) data.
type type determines how the data are split i.e. conditioned, and then plotted.

The default is will produce a single plot using the entire data. Type can be one
of the built-in types as detailed in cutData e.g. "season", "year", "weekday"
and so on. For example, type = "season"will produce four plots — one for
each season.
It is also possible to choose type as another variable in the data frame. If that
variable is numeric, then the data will be split into four quantiles (if possible)
and labelled accordingly. If type is an existing character or factor variable,
then those categories/levels will be used directly. This offers great flexibility
for understanding the variation of different variables and how they depend
on one another.

cluster Should the data be ordered according to cluster analysis. If TRUE hierarch-
ical clustering is applied to the correlationmatrices using hclust to group
similar variables together. Withmany variables clustering can greatly assist
interpretation.

210

31 Utility functions

cols Colours to be used for plotting. Options include "default", "increment", "heat",
"spectral", "hue", "brewer1", "greyscale" and user defined (see openColours
for more details).

r.thresh Values of greater than r.thresh will be shown in bold type. This helps to
highlight high correlations.

text.col The colour of the text used to show the correlation values. The first value
controls the colour of negative correlations and the second positive.

auto.text Either TRUE (default) or FALSE. If TRUE titles and axis labels will automatically
try and format pollutant names and units properly e.g. by subscripting the ‘2’
in NO2.

... Other graphical parameters passed onto lattice:levelplot, with common
axis and title labelling options (such as xlab, ylab, main) being passed via
quickText to handle routine formatting.

An example of the corPlot function is shown in Figure 101. In this Figure it can be seen
the highest correlation coefficient is between PM10 and PM2.5 (r = 0. 84) and that thecorrelations between SO2, NO2 and NOx are also high. O3 has a negative correlation withmost pollutants, which is expected due to the reaction betweenNO andO3. It is not thatapparent in Figure 101 that the order the variables appear is due to their similarity with
one another, through hierarchical cluster analysis.
Note also that the corPlot accepts a type option, so it possible to condition the data in

many flexible ways, although this may become difficult to visualise with toomany panels.
For example:

corPlot(mydata, type = "season")

When there are a very large number of variables present, the corPlot is a very effective
way of quickly gaining an idea of how variables are related. As an example (not plotted)
it is useful to consider the hydrocarbons measured at Marylebone Road. There is a lot
of information in the hydrocarbon plot (about 40 species), but due to the hierarchical
clustering it is possible to see that isoprene, ethane and propane behave differently to
most of the other hydrocarbons. This is because they have different (non-vehicle exhaust)
origins. Ethane and propane results from natural gas leakagewhereas isoprene is biogenic
in origin (although some is from vehicle exhaust too). It is also worth considering how the
relationships change between the species over the years as hydrocarbon emissions are
increasingly controlled, or maybe the difference between summer andwinter blends of
fuels and so on.

hc <- importAURN(site = "my1", year = 2005, hc = TRUE)
now it is possible to see the hydrocarbons that behave most similarly to one
another
corPlot(hc)

31.7 Preparing data to compare sites, for model evaluation and intervention
analysis
Many of the functions described have the potential to be extremely flexible. Mention
has already beenmade of how to compare different sites in some of the functions. It was
stated that the data had to be in a certain format for the functions to work. This section
describes a few simple functions to do this — andmore.

211

31 Utility functions

corPlot(mydata)

PM10

PM2.5

NO2

SO2

NOx

CO

O3

wind spd.

wind dir.

P
M

10

P
M

2.
5

N
O

2

S
O

2

N
O

x

C
O

O
3

w
in

d
sp

d.

w
in

d
di

r.

100 84 58 49 62 45 −28 2 −7

84 100 53 55 65 54 −33 −5 −7

58 53 100 59 79 54 −40 6 0

49 55 59 100 71 64 −36 0 −1

62 65 79 71 100 82 −51 8 5

45 54 54 64 82 100 −41 14 4

−28 −33 −40 −36 −51 −41 100 16 −7

2 −5 6 0 8 14 16 100 1

−7 −7 0 −1 5 4 −7 1 100

Figure 101: Example of a correlationmatrix showing the relationships between variables.

31.7.1 Intervention analysis
Another common scenario is that there is interest in showing plots by different time
intervals on the same scale. There could be all sorts of reasons for wanting to do this. A
classic example would be to show a before/after plot due to some intervention such as a
low emission zone. Again, the function below exploits the flexible “site” option available in
many functions.
A small helper function splitByDate has beenwritten to simplify chopping up a data

set into different defined periods. The function takes three arguments: a data frame to
process, a date (or dates) and labels for each period. If there was interest in looking at
mydata before and after the 1st Jan 2003, it would be split into two periods (before that
date and after). In other words, there will always be onemore label than there is date. We
have made the function easier to use for supplying dates. Dates can be accepted in the
form “dd/mm/yyyy” e.g. 13/04/1999 or as “yyyy-mm-dd” e.g. “1999-04-13”.
The example below chops the data set up into three sections, called “before”, “during”

and “after”. This is done to show howmore than one date can be supplied to the function.

212

31 Utility functions

polarAnnulus(mydata, pollutant = "no2", type = "split.by", period = "hour",
layout = c(3, 1))

0

23

0

23

W

S

N

E

before

0

23

0

23

W

S

N

E

during

0

23

0

23

W

S

N

E

after

NO2

30

40

50

60

70

80

90

Figure 102: Example of processing data for use in the polarAnnulus function by time
period for NO2 concentrations atMarylebone Road.

mydata <- splitByDate(mydata, dates = c("1/1/2000", "1/3/2003"), labels = c("before",
"during", "after"))

head(mydata)

date ws wd nox no2 o3 pm10 so2 co pm25 split.by
1 1998-01-01 00:00:00 0.6 280 285 39 1 29 4.7 3.4 NA before
2 1998-01-01 01:00:00 2.2 230 NA NA NA 37 NA NA NA before
3 1998-01-01 02:00:00 2.8 190 NA NA 3 34 6.8 9.6 NA before
4 1998-01-01 03:00:00 2.2 170 493 52 3 35 7.7 10.2 NA before
5 1998-01-01 04:00:00 2.4 180 468 78 2 34 8.1 8.9 NA before
6 1998-01-01 05:00:00 3.0 190 264 42 0 16 5.5 3.1 NA before

tail(mydata)

date ws wd nox no2 o3 pm10 so2 co pm25 split.by
65528 2005-06-23 07:00:00 1.5 250 404 156 4 49 NA 1.8 28 after
65529 2005-06-23 08:00:00 1.5 260 388 145 6 48 NA 1.6 26 after
65530 2005-06-23 09:00:00 1.5 210 404 168 7 58 NA 1.3 34 after
65531 2005-06-23 10:00:00 2.6 240 387 175 10 55 NA 1.3 34 after
65532 2005-06-23 11:00:00 3.1 220 312 125 15 52 NA 1.3 33 after
65533 2005-06-23 12:00:00 3.1 220 287 119 17 55 NA 1.3 35 after

As can be seen, there is a new field split.by (although the name can be set by the user),
where at the beginning of the time series it is labelled “before” and at the end it is labelled
“after”. Now let us make a polar annulus plot showing the diurnal variation of NO2 by winddirection:
In some cases it would make sense to have labels that refer to dates. Here’s an example:
mydata <- splitByDate(mydata, dates = c("1/1/2000", "1/3/2003"), labels = c("before Jan.
2000",

"Jan. 2000 - Mar. 2003", "after Mar. 2003"))

31.7.2 Combining lots of sites
A typical example is that imported data have a date field and one ormore pollutant fields
from one of more sites in a series of columns. The aimwould be, for example, to produce
a series of plots by site for the same pollutant. If the data contains multiple pollutants

213

31 Utility functions

andmultiple sites, it makes sense to subset the data first.18 For example, if a data frame
“mydata” has fields “date”, “nox.site1”, “so2.site1”, “nox.site2”, “so2.site2”, then just working
with the NOx data can be done by:

subdata <- subset(mydata, select = c(date, nox.site1, nox.site2))

Rather than import new data, the code below first makes an artificial data set from
which to work. In a real situation, the first few lines would not be needed.

18Note that if you are able to use data from the AURN archive using the importAURN function, the data will
already be in the correct format for direct use bymany of the functions—although it maywell be necessary
tomerge somemeteorological data first.

214

31 Utility functions

load reshape2 package if it is not already loaded...
library(reshape2)
first make a subset of the data: date and nox, ws, wd
siteData <- subset(mydata, select = c(date, ws, wd, nox))

look at the first few lines
head(siteData)

date ws wd nox
1 1998-01-01 00:00:00 0.6 280 285
2 1998-01-01 01:00:00 2.2 230 NA
3 1998-01-01 02:00:00 2.8 190 NA
4 1998-01-01 03:00:00 2.2 170 493
5 1998-01-01 04:00:00 2.4 180 468
6 1998-01-01 05:00:00 3.0 190 264

rename the nox field to 'site1'
names(siteData)[4] <- "site1"

now make another field 'site2' to be equal to half of site1
siteData$site2 <- siteData$site1 * 0.5
end of making new data, now let's process it
head(siteData)

date ws wd site1 site2
1 1998-01-01 00:00:00 0.6 280 285 142
2 1998-01-01 01:00:00 2.2 230 NA NA
3 1998-01-01 02:00:00 2.8 190 NA NA
4 1998-01-01 03:00:00 2.2 170 493 246
5 1998-01-01 04:00:00 2.4 180 468 234
6 1998-01-01 05:00:00 3.0 190 264 132

now we need to 'stack' the data, ready for openair functions use the melt
function in the reshape2 package (loaded with openair)
siteData <- melt(siteData, measure.vars = c("site1", "site2"))
head(siteData)

date ws wd variable value
1 1998-01-01 00:00:00 0.6 280 site1 285
2 1998-01-01 01:00:00 2.2 230 site1 NA
3 1998-01-01 02:00:00 2.8 190 site1 NA
4 1998-01-01 03:00:00 2.2 170 site1 493
5 1998-01-01 04:00:00 2.4 180 site1 468
6 1998-01-01 05:00:00 3.0 190 site1 264

change the variable names (one of them has to be 'site')
names(siteData)[4:5] <- c("site", "nox")

Now it is possible to run many openair functions on this dataset. In this case, let us
consider a polarPlot. Note that this process would work with many more sites than
shown here. Note, however, many functions such as polarPlot accept multiple pollutants
and the importAURN and importKCL format multiple site data directly and no additional
work is required by the user.

215

31 Utility functions

polarPlot(siteData, pollutant = "nox", type = "site")

0

5

10 wind spd.

15

20

25

W

S

N

E

site1

0

5

10 wind spd.

15

20

25

W

S

N

E

site2 mean

NOx

50

100

150

200

250

Figure 103: Example of processing data for use in the polarPlot function by site.

Acknowledgements
We are very grateful to a range of organisations that have so far seen this initiative as
something worth supporting financially. These include:
• Dr Karl Ropkins of the Institute for Transport Studies at the University of Leeds for
his contributions during the NERC project.

• The initial funding supplied by the Faculty of Environment at the University of Leeds
to help develop a course on R to analyse and understand air pollution data.

• Sefton Council for their direct funding of data analysis in their borough as part of
the Beacon air quality scheme.

• AEA.
• North Lincolnshire Council.
• Defra as part of their work through the AURN.
• The Natural Environment Research Council (NERC) Knowledge Transfer grant
NE/G001081/1.

This work would not be possible without the incredible individuals who have given their
time freely to develop the R system. This includes those in the R-Core Development Team
and all those that contribute to its development (R Development Core Team, 2011).

Further information
For any enquiries related to this document or the openair package, please use the contact
details below. Please contact us regarding any of the following: bug reports, suggestions
for existing functions, suggestions for new functions and offer of code contributions.

216

References

When reporting potential bugs, it is helpful (sometimes essential) to submit a reproducible
example, which would normally require sending a description of the problem and the data
set used. Also, we are interested in developing further funded case studies.
David Carslaw
King’s College London
Environmental Research Group
FranklinWilkins Building
150 Stamford Street
London
SE1 9NH
UK
e-mail: mailto:david.carslaw@kcl.ac.uk

References
AQEG, 2008. Trends in primary nitrogen dioxide in the UK. Air Quality Expert Group.
Report prepared by the Air Quality Expert Group for the Department for Environ-
ment, Food and Rural Affairs; Scottish Executive;Welsh Assembly Government; and
Department of the Environment in Northern Ireland. 199

Carslaw, D. C., 2005. Evidence of an increasing NO2/NOX emissions ratio from road trafficemissions. Atmospheric Environment 39 (26), 4793–4802. 199
Carslaw, D. C., Beevers, S. D., 2004. Investigating the potential importance of primary NO2emissions in a street canyon. Atmospheric Environment 38 (22), 3585–3594. 199
Carslaw, D. C., Beevers, S. D., 2005. Estimations of road vehicle primary NO2 exhaustemission fractions usingmonitoring data in london. Atmospheric Environment 39 (1),
167–177. 199

Carslaw, D. C., Beevers, S. D., Ropkins, K., Bell, M. C., 2006. Detecting and quantifying
aircraft and other on-airport contributions to ambient nitrogen oxides in the vicinity of
a large international airport. Atmospheric Environment 40 (28), 5424–5434. 101

Carslaw, D. C., Beevers, S. D., Tate, J. E., 2007. Modelling and assessing trends in traffic-
related emissions using a generalised additive modelling approach. Atmospheric Envir-
onment 41 (26), 5289–5299. 138

Carslaw, D. C., Carslaw, N., 2007. Detecting and characterising small changes in urban
nitrogen dioxide concentrations. Atmospheric Environment 41 (22), 4723–4733. 199

Chambers, J. M., 2007. Software for Data Analysis: Programmingwith R. Springer, New
York, ISBN 978-0-387-75935-7. 8

Chatfield, C., 2004. The analysis of time series : an introduction / Chris Chatfield, 6th
Edition. Chapman &Hall/CRC, Boca Raton, FL ; London :. 225

Clapp, L., Jenkin, M., 2001. Analysis of the relationship between ambient levels of O3, NO2andNO as a function of NOX in the UK. Atmospheric Environment 35 (36), 6391–6405.199
Cleveland,W., 1985. The elements of graphing data.Wadsworth Publ. Co. Belmont, CA,
USA. 54

217

mailto:david.carslaw@kcl.ac.uk

References

Cleveland,W., 1993. Visualizing Data. Hobart Press, Summit, NJ. 54
Crawley, M., 2007. The R book.Wiley. 12
Dalgaard, P., 2008. Introductory Statistics with R, 2nd Edition. Springer, iSBN 978-0-387-
79053-4.
URL http://www.biostat.ku.dk/~pd/ISwR.html 12

Davison, A. C., Hinkley, D., 1997. Bootstrap methods and their application. Cambridge
University Press, Cambridge ; New York, NY, USA :, (Anthony Christopher). 221

Efron, B., Tibshirani, R., 1993. An Introduction to the Bootstrap. Chapman &Hall. 221
Friendly, M., 2002. Corrgrams: Exploratory Displays for CorrelationMatrices. The Amer-
ican Statistician 56 (4), 316–325. 210

Hastie, T. J., Tibshirani, R., 1990. Generalized additive models. Chapman andHall, London.
102

Helsel, D., Hirsch, R., 2002. Statistical methods in water resources. US Geological Survey.
URL http://pubs.usgs.gov/twri/twri4a3/ 12

Henry, R., Norris, G. A., Vedantham, R., Turner, J. R., 2009. Source Region Identification
Using Kernel Smoothing. Environmental Science & Technology 43 (11), 4090–4097. 86

Hirsch, R. M., Slack, J. R., Smith, R. A., 1982. Techniques of trend analysis for monthly
water-quality data.Water Resources Research 18 (1), 107–121, iSI Document Delivery
No.: NC504. 130

Kunsch, H. R., 1989. The jackknife and the bootstrap for general stationary observations.
Annals of Statistics 17 (3), 1217–1241. 130, 222

Leisch, F., 2002. Sweave: Dynamic generation of statistical reports using literate data
analysis. In: Härdle,W., Rönz, B. (Eds.), Compstat 2002—Proceedings in Computational
Statistics. Physica Verlag, Heidelberg, pp. 575–580, iSBN 3-7908-1517-9.
URL http://www.stat.uni-muenchen.de/~leisch/Sweave 9

Maindonald, J., Braun, J., 2007. Data Analysis and Graphics Using R: An Example-based
Approach. Cambridge University Press. 12

Matloff, N., 2011. The Art of R Programming. No Starch Press. 13
McHugh, C. A., Carruthers, D. J., Edmunds, H. A., 1997. ADMS and ADMS-Urban. Interna-
tional Journal of Environment and Pollution 8 (3-6), 438–440. 65

Monks, P. S., 2000. A review of the observations and origins of the spring ozonemaximum.
Atmospheric Environment 34 (21), 3545–3561, iSI Document Delivery No.: 333VG.
169

RDevelopment Core Team, 2011. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0.
URL http://www.R-project.org/ 216

Sarkar, D., 2007. LatticeMultivariate Data Visualization with R. Springer, New York, ISBN
978-0-387-75968-5. 12, 210

Sen, P. K., 1968. Estimates of regression coefficient based on kendall’s tau. Journal of the
American Statistical Association 63(324). 130

218

http://www.biostat.ku.dk/~pd/ISwR.html
http://pubs.usgs.gov/twri/twri4a3/
http://www.stat.uni-muenchen.de/~leisch/Sweave
http://www.R-project.org/

References

Spector, P., 2008. DataManipulation with R. Springer, New York, ISBN 978-0-387-74730-
9. 12

Taylor, K., 2001. Summarizingmultiple aspects of model performance in a single diagram.
Journal of Geophysical Research 106 (D7), 7183–7192. 188

Theil, H., 1950. A rank invariant method of linear and polynomial regression analysis, i, ii,
iii. Proceedings of the Koninklijke Nederlandse AkademieWetenschappen, Series A –
Mathematical Sciences 53, 386–392, 521–525, 1397–1412. 130

Tukey, J., 1977. Exploratory data analysis. Addison-Wesley Series in Behavioral Science:
QuantitativeMethods, Reading, Mass.: Addison-Wesley, 1977. 8

Westmoreland, E. J., Carslaw, N., Carslaw, D. C., Gillah, A., Bates, E., 2007. Analysis of air
quality within a street canyon using statistical and dispersion modelling techniques.
Atmospheric Environment 41 (39), 9195–9205. 101

Wilcox, R. R., 2010. Fundamentals ofModern StatisticalMethods: Substantially Improving
Power and Accuracy, 2nd Edition. Springer NewYork.
URL http://www.springerlink.com/content/978-1-4419-5524-1 130

Wilks, D. S., 2005. StatisticalMethods in the Atmospheric Sciences, Volume 91, Second
Edition (International Geophysics), 2nd Edition. Academic Press. 193

Willmott, C., 1982. Some Comments on The EvaluationOfModel Performance. Bulletin
of The AmericanMeteorological Society 63 (11), 1309–1313. 184

Willmott, C. J., Robeson, S. M., Matsuura, K., 2011. A refined index of model performance.
International Journal of Climatology. 184

Wood, S. N., 2006. Generalized AdditiveModels: An Introduction with R. Chapman and
Hall/CRC. 102, 224

Yu, K., Cheung, Y., Cheung, T., Henry, R., 2004. Identifying the impact of large urban airports
on local air quality by nonparametric regression. Atmospheric Environment 38 (27),
4501–4507. 101

219

http://www.springerlink.com/content/978-1-4419-5524-1

A Installing andmaintaining R

A Installing andmaintaining R
A.1 Downloading and installing R

R can be downloaded from http://www.r-project.org, shown in Figure 104. On the left
hand side there is a link to the Comprehensive R Archive Network (CRAN), which provides
links to local repositories where the software can be downloaded from. The one most
relevant to the UK is hosted by the University of Bristol. Follow the link and choose to
download “Precompiled binary distributions” from the Download and Install R section.
Most likely youwill want theWindows version, but versions for Linux and AppleMac are
also available. This will provide an executable file that can be downloaded (something
like R-2.12.0-win.exe). A direct link from the UK to theWindows download file is http:
//www.stats.bris.ac.uk/R/bin/windows/base/

Important Information — Internet connections for Windows users
Note that R set up and maintenance works best when users have direct Inter-
net access. Many users that use R through their organisation’s computers
may need to install R slightly differently due to the proxy settings used.
Rather than accept all the defaults during installation, at the Setup screen
choose not to accept the defaults and when offered, choose “Internet2” as
the Internet option. This will force R to use the same proxy settings used by
Internet Explorer. The defaults for all other options can be accepted.
The other issue on Windows systems is Administrator rights. When it comes
to installing or updating packages it may be necessary to “Run as Admin-
istrator”. To do this, go to R on the Windows menu and right-click, then
choose to “Run as administrator”.
The installation of R is straightforward. Most users can happily accept all the defaults.

However, see box for installation information for users installing R on an organisation’s
computer system. Choose where youwant to install it (the default is usually appropriate
for most systems). It is a good idea to install it where you have write privileges — probably
more of an issue for Windows Vista/7 users. Many more details are provided on the R
website regarding installation on specific systems.
. . . then accept all the defaults unless you have a preference for an alternative option.

A.2 Maintenance
One of the advantages of R compared with most commercially available software is that it
is regularly updated; fixing any bugs and adding new features. New versions tend to be
released every six months and it is wise to keep the version as up to date as possible. You
can check thewebsite occasionally, or sign up to be alerted to new releases (recommen-
ded). Often, as new versions of the base system are released, certain R packages will also
require updating. If there is incompatibility between the base system and an R package
youwill likely receive a warningmessage. To keep the packages up to date select Packages
| Update packages . . . , which will prompt you to choose a CRANmirror (choose the UK one
again). This will check to see if all you packages are up to date, and if not, automatically
download and install more recent versions. Note the information about R in the boxwhere
it may be necessary to run R as an administrator.

220

http://www.r-project.org
http://www.stats.bris.ac.uk/R/bin/windows/base/
http://www.stats.bris.ac.uk/R/bin/windows/base/

B Bootstrap estimates of uncertainty

Figure 104: The R-project web pages.

Figure 105:Choose where R should be installed.

B Bootstrap estimates of uncertainty
B.1 The bootstrap

The bootstrap is a data-based simulationmethod for analysing data, including hypothesis
testing, standard error and confidence interval estimation. It involves repeatedly drawing
random samples from the original data, with replacement (see Efron and Tibshirani (1993);
Davison andHinkley (1997) for a detailed history and examples of use of the bootstrap).
Each bootstrap sample is the same size as the original sample. The “with replacement” bit is
important. Samplingwith replacementmeans that after we randomly draw an observation
from the original sample we put it back before drawing the next observation i.e. it is
possible to draw the same samplemore than once. In fact, on average, 37% of datawill not
be sampled each time. If one sampled without replacement it would be equivalent to just
shuffling the data and no new information is available. Typically, 100s or 1000s of samples
are required in order to derive reliable statistics.
The term bootstrap derives from the phrase “to pull oneself up by one’s bootstraps”.

221

B Bootstrap estimates of uncertainty

The phrase is based on one of the eighteenth century Adventures of Baron Munchausen
by Rudolph Erich Raspe. The Baron had fallen to the bottom of a deep lake. Just when it
looked like all was lost, he thought to pick himself up by his own bootstraps! In a statistical
sense it is meant to convey the idea of generating ‘new’ data from the original data set
itself, which seems like an implausible thing to do, but has been shown to be valid.
When the bootstrap was discovered in the 1970s it was difficult to apply tomany prac-

tical problems because computers were not powerful enough to carry out such repetitive
and intensive calculations. However, computers are now sufficiently powerful to allow
these methods to be used (in most circumstances) easily. This section does not aim to
provide an in-depth consideration of statistics and justify the use of thesemethods, but
rather aims to provide some background in their use in openair.
When used to estimate confidence intervals, the bootstrap samplingwill yield, say, 1000

estimates of the statistic of interest e.g. the slope of a trend. This distribution could be
highly skewed and this is one of the principal advantages of the technique: normality is
not required. We now have a 1000 bootstrap samples, and 1000 estimates of the statistic
of interest, one from each bootstrap sample. If these 1000 bootstrap samples are ordered
in increasing value, a bootstrap 95% confidence interval for themeanwould be from the
25th to the 975th largest values. Sometimes, uncertainty estimates are not symmetrical.
For example, it may not be possible to report an uncertainty as 100± 12, but 100 [87,
121], where 87 and 121 are the lower and upper 95% confidence intervals, respectfully.

B.2 The block bootstrap
The basic bootstrap assumes that data are independent. However, in time series this is
rarely the case due to autocorrelationwhen consecutive points in time are related to one
another. For example, for data with a strong seasonal effect, themonth of Januarymay
tend to have higher values than othermonths. These effects can, however, be difficult to
characterise andmodel. Themotivation for accounting for autocorrelation in this project
is mostly to ensure that uncertainty estimates in trends and other statistics are not overly
optimistic, which would generally be the case if autocorrelation was not accounted for.
These effects can be accounted for by ensuring that the random sampling captures the
correlation structure of the data using a block bootstrap (Kunsch, 1989). The idea is that if
data (or residuals from amodel) are sampled in small blocks, the correlation structure is
retained, provided there is not significant correlation between the blocks.
The following Figures highlight the importance of accounting for autocorrelation using

the TheilSen function. Figure 106 shows a simulated time series comprising of a linear
trend+ some random noise with no autocorrelation. The Sen-Theil slope and the slope
uncertainties are shown (and the slope statistics upper left). By contrast, Figure 107 shows
a similar series but with a high autocorrelation value of 0.8. In this time series it is possible
to see that the values seem to fall and rise in “chunks”, indicative of autocorrelation. In this
plot, no account has been taken of autocorrelation and the uncertainty in the slope is very
similar to Figure 106.
However, if autocorrelation is accounted for using the data shown in Figure 107, the

uncertainty in the slope increasesmarkedly, as shown in Figure 108. Instead of the 95%
confidence intervals ranging from 0.42–0.54, they now range from 0.36–0.61— approxim-
ately double the uncertainty of the case where no account is taken of autocorrelation.
The block bootstrap has also been applied to models e.g. the Generalized Additive

Model (GAM) used in the smoothTrend function. There are two options here: the obser-
vations can be sampled and the models run many times (called case resampling), or the
residuals from the model can be sampled and added to the model predictions to make
“new” input data and runmany times (called residual resampling). There are pros and cons

222

B Bootstrap estimates of uncertainty

date

co
nc

0

2

4

6

1998 2000 2002 2004 2006 2008

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

0.4 [0.33, 0.46] units/year ***

Figure 106:AR1 time random series where the autocorrelation coefficient is zero.

date

co
nc

−2

0

2

4

6

1998 2000 2002 2004 2006 2008

●

●

●
●●●

●

●●

●

●

●

●●●

●

●

●●●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●●

●●

●

●

●

●
●

●

●

●●

●●

●
●

●

●

●●●

●

●
●
●

●●

●●
●
●
●

●●

●

●

●
●
●

●
●

●
●

●●

●

●●●

●
●

●

0.48 [0.42, 0.54] units/year ***

Figure 107:AR1 time random series where the autocorrelation coefficient is 0.8. The
uncertainty in the Sen-Theil slope estimate does not account for autocorrela-
tion.

with each approach, but often the twomethods yield similar results. In the case of a GAM
(or specifically themgcv package), which uses cross-validation for model fitting, having
duplicate samples through bootstrapping would seem tomake little sense. The approach
adopted here therefore is to use residual resampling. The effect of taking account of
autocorrelation often (but not always) is an increase in the predicted uncertainty inter-
vals, and a smooth function that is less “wiggly” than that derived by not accounting for
autocorrelation.
Amore “robust” approach is outlined in Appendix C, wheremodels are used to describe

the correlation structure of the data.
Clearly, the importance of these issues is data-dependent and there are other issues

to consider too. However, if one is interested in drawing important inferences from data,
then it would seemwise to account for these effects. It should be noted that these issues
are an area of active research and will be revisited from time to time with the aim of
improving the robustness of the techniques used.

223

C A closer look at trends

date

co
nc

−2

0

2

4

6

1998 2000 2002 2004 2006 2008

●

●

●
●●●

●

●●

●

●

●

●●●

●

●

●●●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●●

●●

●

●

●

●
●

●

●

●●

●●

●
●

●

●

●●●

●

●
●
●

●●

●●
●
●
●

●●

●

●

●
●
●

●
●

●
●

●●

●

●●●

●
●

●

0.48 [0.36, 0.61] units/year ***

Figure 108:AR1 time random series where the autocorrelation coefficient is 0.8. The
uncertainty in the Sen-Theil slope estimate does account for autocorrelation.

C A closer look at trends
Understanding trends is a core component of air quality and the atmospheric sciences
in general. openair provides two main functions for considering trends (smoothTrend
and TheilSen), the latter useful for linear trend estimates. Understanding trends and
quantifying them robustly is not so easy and careful analysis would treat each time series
individually and consider a wide range of diagnostics. In this section we take advantage of
some of the excellent capabilities that R has to consider fitting trendmodels. Experience
with real atmospheric composition data shows that trends are rarely linear, which is
unfortunate given howmuch of statistics has been built around the linear model.
Generalized Additive Models (GAMs) offer a flexible approach to calculating trends

and in particular, the mgcv package contains many functions that are very useful for such
modelling. Some of the details of this type of model are presented inWood (2006) and the
mgcv package itself.
The example considered is 23 years of O3measurements atMace Head on theWestcoast of Ireland. The example shows the sorts of steps thatmight be taken to build amodel

to explain the trend. The data are first imported and then the year, month and ‘trend’
estimated. Note that ‘trend’ here is simply a decimal date that can be used to construct
various explanatorymodels.
First we import the data:
library(mgcv)
dat <- importAURN(site = "mh", year = 1988:2010)

calculate monthly means
monthly <- timeAverage(dat, avg.time = "month")
now calculate components for the models
monthly$year <- as.numeric(format(monthly$date, "%Y"))
monthly$month <- as.numeric(format(monthly$date, "%m"))
monthly <- transform(monthly, trend = year + (month - 1)/12)

It is always a good idea to plot the data first:
Figure 109 shows that there is a clear seasonal variation in O3 concentrations, which iscertainly expected. Less obvious is whether there is a trend.
Even though it is known there is a seasonal signal in the data, wewill first of all ignore it

224

C A closer look at trends

timePlot(monthly, pollutant = "o3")

O
3

50

60

70

80

90

1990 1995 2000 2005 2010

O3

Figure 109:Monthly meanO3 concentrations atMace Head, Ireland (1998–2010).

and build a simplemodel that only has a trend component (modelM0).
M0 <- gam(o3 ˜ s(trend), data = monthly)
summary(M0)

##
Family: gaussian
Link function: identity
##
Formula:
o3 ~ s(trend)
<environment: 0x000000000d65ea78>
##
Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 71.34 0.62 115 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Approximate significance of smooth terms:
edf Ref.df F p-value
s(trend) 1 1 6.96 0.0088 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
R-sq.(adj) = 0.0212 Deviance explained = 2.48%
GCV score = 106.82 Scale est. = 106.04 n = 276

This model only explains about 2% of the variation as shown by the adjusted r2. More of
a problem however is that no account has been taken of the seasonal variation. An easy
way of seeing the effect of this omission is to plot the autocorrelation function (ACF) of
the residuals, shown in Figure 110. This Figure clearly shows the residuals have a strong
seasonal pattern. Chatfield (2004) provides lots of useful information on time series
modelling.
A refinedmodel should therefore take account of the seasonal variation in O3 concen-trations. Therefore, we add a term taking account of the seasonal variation. Note also that

225

C A closer look at trends

acf(residuals(M0))

0 5 10 15 20

−
0.

2
0.

2
0.

6
1.

0
Lag

A
C

F

Series residuals(M0)

Figure 110:ACF for the residuals of modelM0.

we choose a cyclic spline for themonthly component (bs = "cc"), which joins the first and
last points i.e. January andDecember.

M1 <- gam(o3 ˜ s(trend) + s(month, bs = "cc"), data = monthly)
summary(M1)

##
Family: gaussian
Link function: identity
##
Formula:
o3 ~ s(trend) + s(month, bs = "cc")
<environment: 0x0000000007b24ee8>
##
Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 71.343 0.374 191 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Approximate significance of smooth terms:
edf Ref.df F p-value
s(trend) 1.22 1.40 15.8 1.7e-05 ***
s(month) 6.11 7.14 66.5 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
R-sq.(adj) = 0.644 Deviance explained = 65.4%
GCV score = 39.766 Scale est. = 38.566 n = 276

Nowwe have amodel that explains muchmore of the variation with an r2 of 0.65. Also,
the p-values for the trend and seasonal components are both highly statistically signficant.
Let’s have a look at the separate components for trend and seasonal variation:
The seasonal component shown in Figure 112 clearly shows the strong seasonal effect

on O3 at this site (peaking in April). The trend component is actually linear in this caseand could be modelled as such. This model looks much better, but as is often the case
autocorrelation could remain important. The ACF is shown in Figure 113 and shows there
is still some short-term correlation in the residuals.
Note also that there are other diagnostic tests one should consider when comparing

thesemodels that are not shown here e.g. such as considering the normality of the resid-

226

C A closer look at trends

plot.gam(M1, select = 1, shade = TRUE)

1990 1995 2000 2005 2010

−
10

0
5

10
15

trend
s(

tr
en

d,
1.

22
)

Figure 111: The trend component of modelM1.

plot.gam(M1, select = 2, shade = TRUE)

2 4 6 8 10 12

−
10

0
5

10
15

month

s(
m

on
th

,6
.1

1)

Figure 112: The seasonal component of modelM1.

uals. Indeed a consideration of the residuals shows that themodel fails to some extent in
explaining the very low values of O3, which can be seen in Figure 109. These few points(which skew the residuals) maywell be associatedwith air masses from the polluted re-
gions of Europe. Better andmore useful models would likely be possible if the data were
split my airmass origin, which is something that will be returned to when openair includes
a consideration of back trajectories.
Further tests, also considering the partial autocorrelation function (PACF) suggest that

an AR1 model is suitable for modelling this short-term autocorrelation. This is where
modelling using a GAMM (Generalized Addtive Mixed Model) comes in because it is
possible to model the short-term autocorrelation using a linear mixedmodel. The gamm
function uses the package nlme and the Generalized LinearMixedModel (GLMM) fitting
routine. In theM2model below the correlation structure is considered explicitly.

227

C A closer look at trends

acf(residuals(M1))

0 5 10 15 20

0.
0

0.
4

0.
8

Lag

A
C

F

Series residuals(M1)

Figure 113:ACF for the residuals of modelM1.

M2 <- gamm(o3 ˜ s(month, bs = "cc") + s(trend), data = monthly, correlation = corAR1(form
= ˜month |

year))
summary(M2$gam)

##
Family: gaussian
Link function: identity
##
Formula:
o3 ~ s(month, bs = "cc") + s(trend)
<environment: 0x000000000c028d18>
##
Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 71.316 0.493 145 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Approximate significance of smooth terms:
edf Ref.df F p-value
s(month) 6.91 6.91 48.5 < 2e-16 ***
s(trend) 1.00 1.00 15.1 0.00013 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
R-sq.(adj) = 0.643 Scale est. = 38.863 n = 276

The ACF plot is shown in Figure 114 and shows that the autocorrelation has been dealt
with andwe can be rather more confident about the trend component (not plotted). Note
that in this case we need to use the normalized residuals to get residuals that take account
of the fitted correlation structure.
Note that modelM2 assumes that the trend and seasonal terms vary independently of

one another. However, if the seasonal amplitude and/or phase change over time then a
model that accounts for the interaction between the twomay be better. Indeed, this does
seem to be the case here, as shown by the improved fit of the model below. This model
uses a tensor product smooth (te) and the reason for doing this and not using an isotropic
smooth (s) is that the trend and seasonal components are essentially on different scales.
Wewould not necessarily want to apply the same level of smoothness to both components.
An example of covariates on the same scale would be latitude and longitude.

228

C A closer look at trends

acf(residuals(M2$lme, type = "normalized"))

0 5 10 15 20

0.
0

0.
4

0.
8

Lag

A
C

F

Series residuals(M2$lme, type = "normalized")

Figure 114:ACF for the residuals of modelM2.

M3 <- gamm(o3 ˜ s(month, bs = "cc") + te(trend, month), data = monthly,
correlation = corAR1(form = ˜month | year))

summary(M3$gam)

##
Family: gaussian
Link function: identity
##
Formula:
o3 ~ s(month, bs = "cc") + te(trend, month)
<environment: 0x0000000019d07b70>
##
Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 71.366 0.504 142 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Approximate significance of smooth terms:
edf Ref.df F p-value
s(month) 3.03e-06 2.00 0.00 1
te(trend,month) 8.42e+00 8.42 9.21 1.1e-11 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
R-sq.(adj) = 0.171 Scale est. = 42.651 n = 276

It becomes a bit more difficult to plot the two-way interaction between the trend and
the month, but it is possible with a surface as shown in Figure 115. This plot shows for
example that during summertime the trends component varies little. However for the
autumn andwinter months there has been amuch greater increase in the trend compnent
for O3.While there have been many steps involved in this short analysis, the data at Mace
Head are not typical of most air quality data observed, say in urban areas. Much of the
data considered in these areas does not appear to have significant autocorrelation in
the residuals once the seasonal variation has been accounted for, therefore avoiding the
complexities of taking account of the correlation structure of the data. It may be for
example that sites like Mace Head and a pollutant such as O3 are much more prone tolarger scale atmospheric processes that are not captured by thesemodels.

229

C A closer look at trends

plot(M3$gam, select = 2, pers = TRUE, theta = 225, phi = 10, ticktype = "detailed")

trend

1990

1995

2000

2005
2010

month

2
4

6

8

10

12

te(trend,m
onth,8.42)

−10

−5

0

5

Figure 115: Plot showing the two-way interaction between the trend and seasonal com-
ponents.

230

	I Introduction to R for analysing data
	1 Introduction
	1.1 Background
	1.2 Using this document
	1.3 The open-source approach
	1.4 Aims
	1.5 Can I use these tools for commercial purposes?

	2 Statistical software R
	2.1 Introduction to R
	2.2 Why use R?
	2.3 Why not use R?
	2.4 Some useful R resources

	3 Basic use of R
	3.1 Introduction
	3.2 Use it as a calculator
	3.3 Basic graph plotting
	3.4 Getting help

	4 Using R to analyse air pollution monitoring data
	4.1 Getting data into R
	4.2 More sophisticated plotting
	4.3 Plotting time series with different averaging times
	4.3.1 Enhancing plots

	4.4 A more complicated example — plot construction
	4.5 Summarising time series data
	4.6 Relationships between variables

	5 General use of R — advice and examples
	5.1 Data input and output
	5.1.1 Data import
	5.1.2 Data export

	5.2 Selecting and replacing parts of vectors and data frames
	5.3 Combining and cleaning up files
	5.4 Reshaping data
	5.5 Example: converting hour-day data to column format
	5.6 Daily means from hourly means — processing wind direction data
	5.7 Using an Editor
	5.7.1 Using the built-in editor
	5.7.2 Using a dedicated editor

	5.8 Several plots on one page
	5.9 Graphing lots of data – using level plots
	5.10 Special symbols for use in plotting air pollution data
	5.11 Using databases with R

	6 Multivariate plots - introduction to the Lattice package
	6.1 Introduction to the Lattice package
	6.2 Example simple plots
	6.3 A more complicated plot — plot each year of data in a separate panel
	6.4 Showing trends dependent on a third variable

	7 Functions in R

	II Dedicated functions for analysing air pollution data
	8 Introduction
	8.1 Installing and loading the openair package
	8.2 Where is the source code?
	8.3 Brief introduction to openair functions
	8.4 Input data requirements
	8.4.1 Dealing with more than one site

	8.5 Using colours
	8.6 Automatic text formatting
	8.7 Multiple plots on a page
	8.8 Getting help

	9 Getting data into openair
	9.1 The import function
	9.2 The importAURN function
	9.3 The importKCL function
	9.4 Importing data from the CERC ADMS modelling systems
	9.4.1 An example considering atmospheric stability

	10 The summaryPlot function
	11 The cutData function
	12 The windRose and pollutionRose functions
	12.1 Purpose
	12.2 Options available
	12.3 Example of use

	13 The percentileRose function
	13.1 Purpose
	13.2 Options available
	13.3 Example of use

	14 The polarFreq function
	14.1 Purpose
	14.2 Options available
	14.3 Example of use

	15 The polarPlot and polarCluster functions
	15.1 Purpose
	15.2 Options available
	15.3 Example of use

	16 The polarAnnulus function
	16.1 Purpose
	16.2 Options available
	16.3 Example of use

	17 The timePlot function
	17.1 Purpose
	17.2 Options available
	17.3 Example of use

	18 The calendarPlot function
	18.1 Purpose
	18.2 Options available
	18.3 Example of use

	19 The TheilSen function
	19.1 Purpose
	19.2 Options available
	19.3 Example of use
	19.4 output

	20 The smoothTrend function
	20.1 Purpose
	20.2 Options available
	20.3 Example of use

	21 The timeVariation function
	21.1 Purpose
	21.2 Options available
	21.3 Example of use
	21.4 Output

	22 The scatterPlot function
	22.1 Purpose
	22.2 Options available
	22.3 Example of use

	23 The linearRelation function
	23.1 Options available
	23.2 Example of use

	24 The trendLevel function
	24.1 Purpose
	24.2 Options available
	24.3 Example of use

	25 GoogleMapsPlot function
	25.1 Purpose
	25.2 Options available
	25.3 Example of usage

	26 openair back trajectory functions
	26.1 Back trajectory cluster analysis with the trajCluster function

	27 Model evaluation — the modStats function
	27.1 Purpose
	27.2 Options available
	27.3 Example of use

	28 Model evaluation — the TaylorDiagram function
	28.1 Purpose
	28.2 Options available
	28.3 Example of use

	29 Model evaluation — the conditionalQuantile and conditionalEval functions
	29.1 Purpose
	29.2 Options available
	29.3 Example of use

	30 The calcFno2 function—estimating primary NO2 fractions
	30.1 Purpose
	30.2 Options available
	30.3 Example of use

	31 Utility functions
	31.1 Selecting data by date
	31.2 Selecting run lengths of values above a threshold — pollution episodes
	31.3 Calculating rolling means
	31.4 Aggregating data by different time intervals
	31.5 Calculating percentiles
	31.6 The corPlot function — correlation matrices
	31.7 Preparing data to compare sites, for model evaluation and intervention analysis
	31.7.1 Intervention analysis
	31.7.2 Combining lots of sites

	Acknowledgements
	Further information and bug reporting
	A Installing and maintaining R
	A.1 Downloading and installing R
	A.2 Maintenance

	B Bootstrap estimates of uncertainty
	B.1 The bootstrap
	B.2 The block bootstrap

	C A closer look at trends

