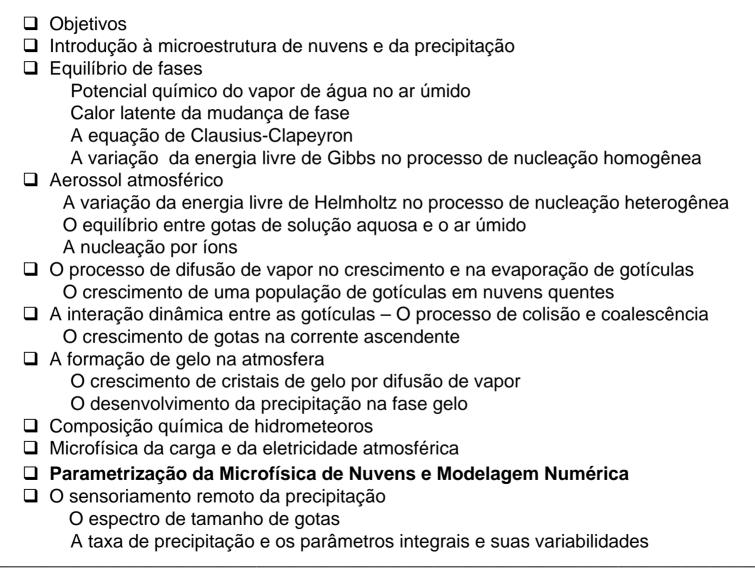
MICROFÍSICA DA PRECIPITAÇÃO


Capitulo 9 – Parametrização da Microfísica de Nuvens e Modelagem Numérica

Prof. OSWALDO MASSAMBANI, Ph.D. Professor Titular

Departamento de Ciências Atmosféricas IAG-USP massambani@usp.br

Maio - Junho de 2006

Conteúdo

Capitulo 9 – Parametrização da Microfísica de Nuvens e Modelagem Numérica

- Parametrização da Microfísica de Nuvens
- Modelagem Numérica utilizando o ARPS

Material elaborado pelo aluno Ricardo Hallak

Modelagem numérica de microfísica de nuvens no ARPS

(Advanced Regional Prediction System)

Introdução

Referências básicas

•ARPS User's Guide em:

ftp://ftp.caps.ou.edu/pub/ARPS/ARPS.docs/ARPS40DOC.PDF

•Lin et al. (1983), "Bulk Parameterization of the Snow Field in a Cloud Model", Journal of Climate and Applied Meteorology, Volume 22, 1065-1092.

<u>Introdução</u>

ARPS

- Modelo de área limitada
- Equações primitivas
- Não-hidrostático
- Totalmente compressível

Variáveis atmosféricas no ARPS

$$u(x, y, z, t) = \overline{u}(z) + u'(x, y, z, t)$$

$$v(x, y, z, t) = \overline{v}(z) + v'(x, y, z, t)$$

$$w(x, y, z, t) = w'(x, y, z, t)$$

$$\theta(x, y, z, t) = \overline{\theta}(z) + \theta'(x, y, z, t)$$

$$p(x, y, z, t) = \overline{p}(z) + p'(x, y, z, t)$$

$$\rho(x, y, z, t) = \overline{\rho}(z) + \rho'(x, y, z, t)$$

$$q_v(x, y, z, t) = \overline{q}_v(z) + q'_v(x, y, z, t)$$

$$q_{li}(x, y, z, t) = q'_{li}(x, y, z, t)$$

Variáveis atmosféricas explicitamente prognosticadas no ARPS

$$u(x, y, z, t)$$

$$v(x, y, z, t)$$

$$w(x, y, z, t)$$

$$\theta'(x, y, z, t)$$

$$p'(x, y, z, t)$$

$$q_{\psi}(x, y, z, t)$$

Categorias da substância <u>ÁGUA</u> consideradas

- Vapor d'água (water vapor)
- Água de nuvem (cloud water)
- Água de chuva (rainwater)
- Gelo em nuvem (cloud ice)
- •Neve (snow)
- Granizo (hail)

Equações de conservação

- Momento
- Massa
- Energia Termodinâmica

Equação da conservação da energia térmica

$$\frac{\partial(\rho\theta')}{\partial t} = -\left[u\frac{\partial\theta'}{\partial x} + v\frac{\partial\theta'}{\partial y} + w\frac{\partial\theta'}{\partial z}\right] - \left[\rho w\frac{\partial\overline{\theta}}{\partial z}\right] + D_{\theta} + S_{\theta}$$

onde

 $D_{\theta} \equiv \text{termos de mistura}$

e

 $S_{\theta} \equiv fontes/sorvedouros$

"Fallout term"

Equação da conservação para as razões de mistura de q_v, q_c, q_r, q_i, q_s, q_h

$$\frac{\partial \left(\rho \, q_{\psi}\right)}{\partial t} = -\left[u \frac{\partial q_{\psi}}{\partial x} + v \frac{\partial q_{\psi}}{\partial y} + w \frac{\partial q_{\psi}}{\partial z}\right] + \frac{\partial \left(\rho V_{q_{\psi}} q_{\psi}\right)}{\partial z} + D_{q_{\psi}} + S_{q_{\psi}}$$

onde

 $D_{q\psi} \equiv \text{termos de mistura},$

 $S_{a,w} \equiv \text{termos fonte/sorvedouro}$

е

 $V_{\alpha w} \equiv$ velocidade terminal dos hidrometeoros em queda

Equação de estado para uma atmosfera contendo diversos constituintes de água

$$\rho = \frac{p}{R_d T} \left(1 - \frac{q_v}{\varepsilon + q_v} \right) \left(1 + q_v + q_{liquido+gelo} \right)$$

onde

q_{líquido+gelo} = conteúdo total de água líquida e gelo e

$$\varepsilon = R_d / R_v \approx 0.622$$

Equação do momento horizontal

Componente zonal

$$\frac{\partial}{\partial t}(u) = -\left[u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z}\right] - \left[\frac{\partial}{\partial x}(p' - \alpha DIV) + \frac{\partial}{\partial z}(p' - \alpha DIV)\right] + \left[\rho f v - \rho f w\right] + D_{v}$$

Componente meridional

$$\frac{\partial}{\partial t}(v) = -\left[u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + w\frac{\partial v}{\partial z}\right] - \left[-\left[\frac{\partial}{\partial y}(p' - \alpha DIV) + \frac{\partial}{\partial z}(p' - \alpha DIV)\right] - \rho f u + D_{v}\right]$$

Equação do momento vertical

$$\frac{\partial}{\partial t}(\rho w) = -\left[u\frac{\partial w}{\partial x} + v\frac{\partial w}{\partial y} + w\frac{\partial w}{\partial z}\right] - \frac{\partial}{\partial z}(\rho' - \alpha DIV) + \rho B + \rho f u + D_w$$

$$B = -g\frac{\rho'}{\overline{\rho}} = g\left[\frac{\theta'}{\overline{\theta}} - \frac{p'}{\overline{\rho}c_S^2} + \frac{q'_v}{\varepsilon + \overline{q}_v} - \frac{q'_v + q_{líquido+gelo}}{1 + \overline{q}_v}\right]$$

$$c_{S} = \sqrt{\gamma R_{d} \, \overline{T}}$$

$$\gamma = \frac{C_p}{C_v}$$

Modelagem numérica da microfísica de nuvens no Advanced Regional Prediction System (ARPS)

Parametrização de Nuvens Quentes

A parametrização de microfísica para chuva de origem em nuvens quentes de Kessler (Klemp e Wilhelmson, 1978)

Considera 3 categorias da substância água

- Vapor d'água: q_v
- •Água de nuvem: q_c
- •Água de chuva: q_r

Fluxograma (WARM RAIN)

AUTOCAC

Calcula a autoconversão de água de nuvem para água de chuva e a acresção de gotículas de água de nuvem para gotas de chuva

MICROPH

Aplica a parametrização de chuva quente pará os campos de vapor d'água, água líquida e temperatura

REVAP

Aplica a evaporação de água de chuva para aş equações de q_v , q_r e θ .

QRFALL

Calcula a taxa de chuva e aplica para a equação de água de chuva

SATADJ

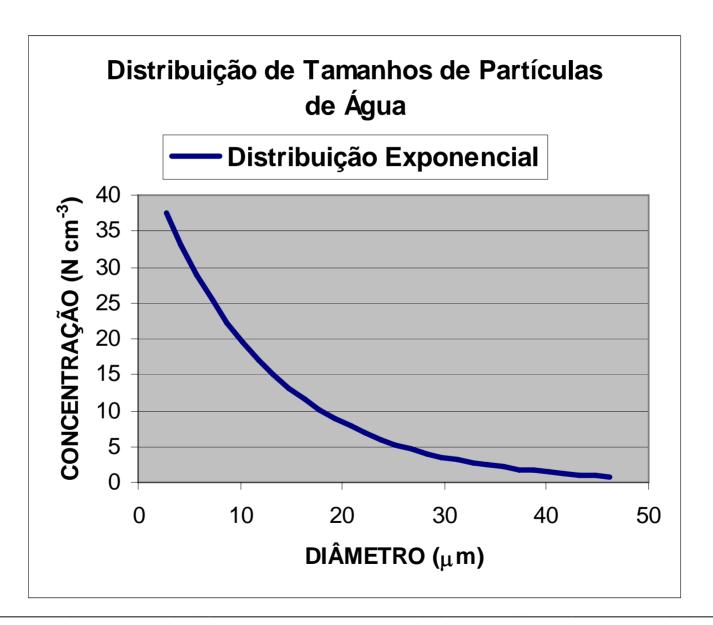
Ajusta os campos de q_ν, q_c e θ para eliminar a supersaturação ou subsaturação na presença de água de nuvem

Sequência de eventos na parametrização de nuvens quentes

- •Cada forma de água líquida é implicitamente caracterizada por uma distribuição de gotículas;
- •Pequenas gotículas de nuvem são primeiramente formadas quando o ar fica saturado e a condensação ocorre;
- •Se a razão de mistura de água de nuvem excede um valor limite prédeterminado, gotas de chuva são formadas pela autoconversão de gotículas de nuvem;
- •As gotas de chuva então coletam gotículas de nuvem menores por acresção enquanto elas caem com sua própria velocidade terminal;
- •Se as gotículas de nuvem entram em ar subsaturado elas evaporam até o ar ficar saturado ou até as gotículas se exaurirem;
- •Gotas de chuva também evaporam em um ambiente subsaturado a uma taxa que depende da sua concentração e do déficit de saturação;
- •Obs.: quando a fase de gelo é incluída, outros processos são envolvidos.

Função distribuição de tamanhos de partículas de água

$$N(D) = N_0 \exp(-\lambda D)$$


onde

 $D \equiv$ diâmetro das partículas e N(D) o número de partículas de diâmetro entre $D \in D + \delta D$ na unidade de volume do espaço;

 $N_0 = \text{parâmetro de intercepção};$

$$\lambda = \left(\frac{\pi \rho_x N_0}{\rho q_x}\right)^{0.25}$$

é a inclinação da distribuição de tamanho das partículas.

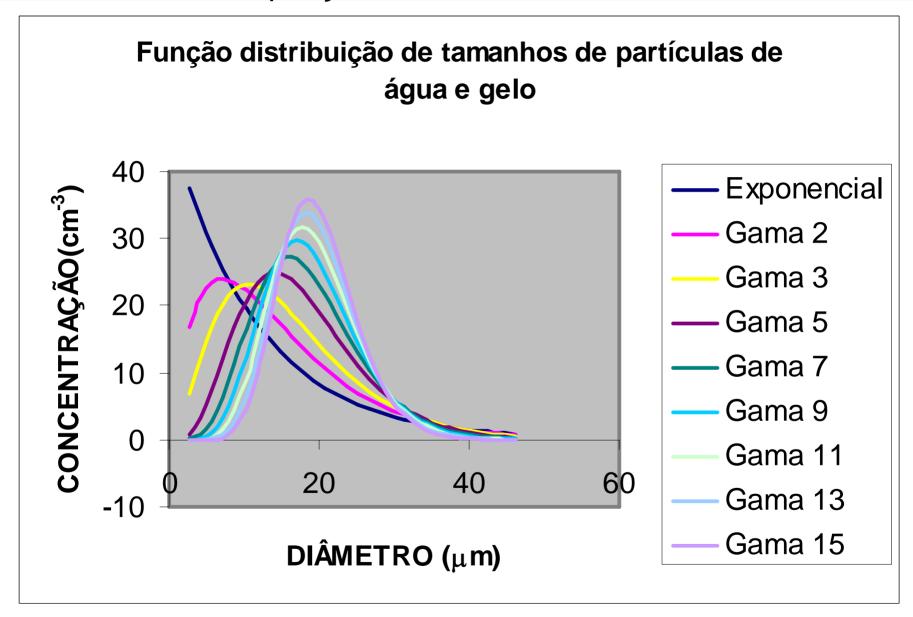
Função distribuição gama generalizada

$$f_{mg}(D) = \frac{c}{\Gamma(\upsilon)} \left(\frac{D}{D_n}\right)^{c\upsilon - 1} \frac{1}{D_n} \exp\left[-\left(\frac{D}{D_n}\right)^c\right]$$

onde:

mg ≡ subscrito que indica "modified gamma";

c e v = parâmetros de forma da função;


D ≡ diâmetro da partícula

 $D_n \equiv diâmetro de escala ("scaling diameter")$

Quando c =
$$\upsilon$$
 = 1 \Rightarrow $\Gamma(\upsilon)$ = 1 e

$$f_{mg}(D) = \frac{1}{D_n} \exp\left[-\left(\frac{D}{D_n}\right)\right]$$

que é a distribuição exponencial.

Taxa de autoconversão de água de nuvem para água de chuva

$$A_r = C_{ar} (q_c - q_{ccrit})$$

onde

 $A_r \equiv \acute{e}$ a taxa de autoconversão (kg kg⁻¹ s⁻¹)

 $q_c \equiv razão de mistura de água de nuvem kg kg⁻¹$

 $q_{c crit} = 1 \times 10^{-3} \text{ kg kg}^{-1} \text{ é o limite crítico da razão de mistura da água de nuvem}$

 $C_{ar} = 1 \times 10^{-3} \text{ s}^{-1}$ é a constante de autoconversão

Taxa de acresção (coleta) de água de nuvem pela água de chuva

$$C_r = C_{cr} q_c q_r^{0.875}$$

onde

 $C_r \equiv \acute{e}$ a taxa de acresção de água de nuvem por água de chuva (kg kg⁻¹ s⁻¹)

q_r = razão de mistura de água de chuva kg kg⁻¹

 C_{cr} = 2.2 s⁻¹ é a constante de acresção

Velocidade terminal de gota de chuva

$$V_{tr} = 36.34 (0.001\overline{\rho} q_r)^{0.1364} (\rho_0/\overline{\rho})^{0.5}$$

onde

 $V_r \equiv \acute{e}$ a velocidade terminal da gota de chuva (m s⁻¹)

q_r = razão de mistura de água de chuva kg kg⁻¹

 ρ_0 = 1.225 kg m⁻³ é a densidade do ar de referência (superfície)

 $\overline{
ho} \equiv$ é a densidade do ar no estado básico (kg m⁻³)

Taxa de evaporação de água de chuva

$$E_r = \frac{1}{\overline{\rho}} \frac{C \left[1 - q_v / q_{vs} \right] \left[\overline{\rho} q_r \right]^{0.525}}{2.030 \times 10^4 + 9.584 \times 10^6 / \left[q_{vs} \overline{p} \right]}$$

onde

 $E_r \equiv \text{taxa de evaporação (kg kg}^{-1} \text{ s}^{-1})$

q_{vs} ≡ razão de mistura do vapor d'água de saturação (kg kg⁻¹⁾

$$\overline{p} \equiv \text{pressão (Pa)}$$

$$\overline{\rho} \equiv$$
 densidade do ar no estado básico (kg m⁻³)

e

$$C = 1.6 + 30.3922 (\bar{\rho} q_r)^{0.2046}$$

é o coeficiente de ventilação

Razão de mistura de saturação (fórmula de Teten)

$$q_{vs} = \frac{380}{p} \exp\left(a_w \frac{T - 273.16}{T - b_w}\right)$$

onde

$$a_{w} = 17.27$$

$$b_{w} = 35.5$$

e
$$b_w = 35.5$$
 para $T \ge 273.16 K$

e

$$a_w = 21.875$$

$$b_{w} = 7.5$$

para

T < 273.16 K

Esquema de ajustamento de saturação

- •Calcula a quantidade de vapor d'água convertida para água de nuvem se existe supersaturação $(q_v > q_{vs})$
- •Calcula a quantidade de água de nuvem evaporada se existe subsaturação $(q_v < q_{vs})$

$$\delta q_{vs} = \frac{-\left(q_{v}^{*} - q_{vs}^{*}\right)}{1 + \frac{a_{w}\left(273.15 - b_{w}\right)q_{vs}^{*}L_{v}/C_{p}}{\left(T^{*} - b_{w}^{*}\right)^{2}}}$$

 $\delta q_{vs} \equiv \text{quantidade de ajustamento para q}_v$, está sujeita ao seguinte teste:

$$\delta q_{vs} = \min \left[\delta q_{vs}, q_c \right]$$

Teste para evitar que haja qc < 0 g kg

Departamento de Ciências Atmosféricas IAG-USP massambani@usp.br

Ajustamento na temperatura potencial correspondente à variação em q_v

$$\delta \theta' = -\overline{\Gamma} \delta q_{vs}$$

onde $\overline{\Gamma}$ é definido como:

$$\overline{\Gamma} = L_v / (\overline{\Pi} C_p)$$
 onde

$$L_v = 2.500.780,0 \left(273.15\overline{T}^{-1}\right)^{\left(0.167 + 3.67 \times 10^{-4} \,\overline{T}\right)}$$

com T [K] e L_v [J Kg⁻¹].

$$\overline{\Pi} = \left(\overline{p}/p_0\right)^{\!\!R_d/C_p}$$
 (Função de Exner), onde:

 R_d = 286.04 J/(Kg K), C_p = 1004.0 J/(Kg K) e p_0 = 1000 hPa é a pressão de referência (constante).

Diferenciando o esquema de microfísica

Os valores ajustados para θ' , q_v , q_c e q_r são obtidos a partir de:

$$\begin{aligned} &\theta'^{n+1} = \theta'^{*n+1} - \overline{\Gamma} \left(\delta \, q_{vs} + 2 \Delta t \, E_r \right) \\ &q_v^{n+1} = q_v^{*n+1} + \delta \, q_{vs} + 2 \Delta t \, E_r \\ &q_c^{n+1} = q_c^{*n+1} - \delta \, q_{vs} - 2 \Delta t \left(A_r + C_r \right) \\ &q_r^{n+1} = q_r^{*n+1} + 2 \Delta t \left(A_r + C_r - E_r \right) \end{aligned}$$

onde ∆t é o passo de tempo de integração.

Modelagem numérica de microfísica de nuvens no Advanced Regional Prediction System (ARPS)

Parametrização de Nuvens Frias

Fluxograma (ICE MICROPHYSICS)

SETCSTICE

Define os valores numéricos das constantes usadas nas equações de parametrização

MICROPH ICE

Aplica a parametrização de microfísica de gelo para os campos de vapor d'água, água líquida, água de gelo e temperatura

ICECVT*

Calcula os termos de conversão entre o vapor d'água e as substâncias água líquida e água de gelo e ajusta apropriadamente os campos

*Código desenvolvido no Goddard Cumulus Ensemble Modeling Group (NASA)

QHFALL

Calcula as taxas de crescimento de água de chuva, neve e granizo e aplica os termos de precipitação nas respectivas equações

Resumo dos processos microfísicos considerados na parametrização de nuvens frias (Lin et al., 1983)

- São simuladas 6 diferentes formas da substância água: vapor d'água, água de nuvem, gelo de nuvem, água de chuva, neve e granizo (hail/graupel);
- Assume-se uma função exponencial de distribuição de tamanho para as partículas que precipitam (água de chuva, neve e granizo);
- •Os conceitos de autoconversão são utilizados para parametrizar os processos de colisão-coalescência e colisão-agregação;
- •São simulados pelo modelo os processos de acresção que envolvem as várias formas de hidrometeoros líquidos e sólidos;

Resumo dos processos microfísicos considerados na parametrização de nuvens frias (Lin et al., 1983)

- São simulados também a transformação de gelo de nuvem para neve por meio de autoconversão (agregação) e os processos de Bergeron e o subseqüente crescimento por acresção ou agregação para a formação de granizo;
- •Granizo é produzido também por vários mecanismos de contato e via congelamento probabilístico de gotas de chuva;
- •Evaporação (sublimação) é levada em consideração para todas as partículas que caem fora da nuvem;
- •O derretimento de gelo e neve é incluída na parametrização;
- •O crescimento úmido e seco de granizo é simulado pelo modelo.

Equação da conservação para as razões de mistura de q_v , q_c , q_r , q_i , q_s , q_h

$$\frac{\partial \left(\rho \, q_{\psi}\right)}{\partial t} = \left[u \frac{\partial q_{\psi}}{\partial x} + v \frac{\partial q_{\psi}}{\partial y} + w \frac{\partial q_{\psi}}{\partial z} \right] + \frac{\partial \left(\rho V_{q_{\psi}} q_{\psi}\right)}{\partial z} + D_{q_{\psi}} + S_{q_{\psi}}$$
onde
D_{q_{\psi}} = termos de mistura.
Alterados pela microfísica

 $D_{aw} \equiv termos de mistura,$

S_{aw} = termos fonte/sorvedouro

e

 $V_{qw} \equiv$ velocidade terminal dos hidrometeoros em queda

Termos fontes/sorvedouros das diversas classes da substância água

$$\begin{split} S_{qc} &= \overline{\rho} \left(c - e_c \right) - T_{qc} + D_{qc} \\ S_{qr} &= \overline{\rho} \left(-e_r + m - f \right) - T_{qr} + D_{qr} \\ S_{qi} &= \overline{\rho} \left(d_i - s_i \right) - T_{qi} + D_{qi} \\ S_{qs} &= \overline{\rho} \left(d_s - s_s - m_s + f_s \right) - T_{qs} + D_{qs} \\ S_{qg} &= \overline{\rho} \left(d_g - s_g - m_g + f_g \right) - T_{qg} + D_{qg} \end{split}$$

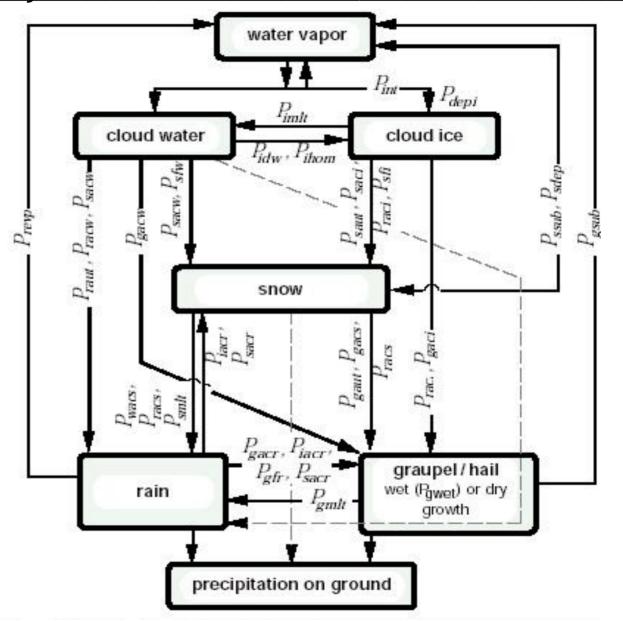
onde:

$$m = m_{s} + m_{g}$$
$$f = f_{s} + f_{g}$$

c = taxa de condensação

e ≡ taxa de evaporação de gotículas

f = taxa de congelamento (freezing) de gotas de chuva


m = taxa de derretimento de neve e granizo

d = taxa de deposição sobre partículas de gelo

s ≡ taxa de sublimação de partículas de gelo

 D_{qc} , D_{qr} , D_{qi} , D_{qs} e D_{qh} são termos de difusão subgrade para q_c , q_r , q_i , q_s e q_g respectivamente. T_{qc} , T_{qr} , T_{qi} , T_{qs} e T_{qh} são as taxas de transferência microfísicas entre as espécies de hidrometeoros e sua soma é zero.

Processos de microfísica de nuvens considerados no esquema de parametrização de microfísica de gelo (após Lin et al., 1983)

Symbol	Definition
P_{dept}	Depositional growth of cloud ice.
$P_{ m int}$	Initiation of cloud ice.
P_{tmlt}	Melting of cloud ice to cloud water.
P_{total}	Depositional growth of cloud ice at the expense of cloud water.
$P_{i \text{ hom}}$	Homogeneous freezing of cloud water to cloud ice.
P_{tacr}	Accretion of rain by cloud ice; producing snow or graupel depending on the amount of rain.
P_{ract}	Accretion of cloud ice by rain; producing snow or graupel depending on the amount of rain.
P_{rant}	Autoconversion of cloud water to rain.
P_{racw}	Accretion of cloud water by rain.
$P_{resp(e_r)}$	Evaporation of rain.
P _{racs}	Accretion of snow by rain; producing graupel if rain or snow exceeds threshold and $T < 273.16$ or rain if $T > 273.16$.
$P(Q)_{satur}$	Accretion of cloud water by snow; producing snow (P_{sacw}) if $T < 273.16$ or rain (Q_{carew}) if $T > 273.16$.
P_{sacr}	Accretion of rain by snow; producing graupel if rain or snow exceeds threshold; if not, produces snow.
P_{sact}	Accretion of cloud ice by snow.
P_{sant}	Autoconversion (aggregation) of cloud ice to snow.

Tabela I:
Definição dos
símbolos
usados na
parametrização
de microfísica

P_{sfw}	Bergeron process (deposition and riming) - transfer of
D.	cloud water to snow.
P_{sti}	Bergeron process embryos (cloud ice) used to calculate
	transfer rate of cloud water to snow (P_{sfw}).
$P_{sdep(d_s)}$	Deposition growth of snow.
$P_{surb(S_s)}$	Sublimation of snow.
$P_{smt(m_s)}$	Melting of snow to rain, $T > 273.16$.
$P_{\text{\tiny MSFGS}}$	Accretion of snow by cloud water to form rain, $T > 273.16$.
P_{gaat}	Autoconversion (aggregation) of snow to graupel.
$P_{gir(I_g)}$	Probabilistic freezing (B_{tor}) of rain to graupel.
$D(Q)_{gacw}$	Accretion of cloud water by graupel.
$D(W)_{gact}$	Accretion of cloud ice by graupel.
$D(W)_{gacr}$	Accretion of rain by graupel.
$P_{gmit(m_g)}$	Melting of graupel to form rain, $T > 273.16$. (In this regime,
	$Q_{\rm gacw}$ is assumed to be shed as rain.)
P_{gwee}	Wet growth of graupel; may involve W_{gass} and W_{gast} and
	must include D_{gacw} or W_{gacr} , or both. The amount of W_{gacw}
o da Tabela I	which is not able to freeze is shed to rain.

Continuação da Tabela

Prof. OSWALDO MASSAMBANI. Ph.D.

Professor Titular

Definições

$$\begin{split} T_{qc} = - \Big(P_{sacw} + P_{raut} + P_{racw} + P_{sfw} + D_{gacw} + Q_{sacw} + Q_{gacw} \Big) - \\ - P_{i\,\text{hom}} + P_{imlt} - P_{idw} \end{split}$$

$$\begin{split} T_{qi} = - \Big(P_{saut} + P_{saci} + P_{raci} + P_{sfi} + D_{gaci} + W_{gaci} \Big) + \\ + P_{i \text{hom}} - P_{imlt} + P_{idw} \end{split}$$

$$\begin{split} T_{qr} &= Q_{sacw} + P_{raut} + P_{racw} + Q_{gacw-} \\ &- \left(P_{iacr} + D_{gacr} + W_{gacr} + P_{sacr} + P_{gfr} \right) \end{split}$$

$$T_{qs} = P_{saut} + P_{saci} + P_{sacw} + P_{sfw} + P_{sfi} + \delta_3 P_{raci} + \delta_3 P_{iacr} + \delta_2 P_{sacr} - \frac{1}{2} P_{sacs} + \frac{1}{2} P_{sacs} +$$

massambani@usp.br

Microfísica da Precipitação

os-Graduação IAG 2006

$$\begin{split} T_{qg} &= \left(1 - \delta_3\right) P_{raci} + D_{gaci} + W_{gaci} + D_{gacw} + \left(1 - \delta_3\right) P_{iacr+} \\ &+ P_{gacs} + D_{gacs} + W_{gacs} + P_{gaut} + \left(1 - \delta_2\right) P_{racs} + D_{gacr} + \\ &+ W_{gacr} + \left(1 - \delta_2\right) P_{sacr} + P_{gfr} \end{split}$$

onde

$$W_{gacr} = P_{wet} - D_{gacw} - W_{gaci} - W_{gacs}$$

Para T > 273.16 °K,

$$\begin{split} P_{saut} &= P_{saci} = P_{sacw} = P_{raci} = P_{iacr} = P_{sfi} = P_{sfw} = \\ &= D_{gacs} = W_{gacs} = D_{gacw} = D_{gacr} = P_{gwet} = \\ &= P_{racs} = P_{sacr} = P_{gfr} = P_{gaut} = P_{imlt} = 0 \end{split}$$

Prof. OSWALDO MASSAMBANI, Ph.D.

Professor Titular

Departamento de Ciências Atmosféricas IAG-USP

Para T < 273.16 °K,

$$Q_{sacw} = Q_{gacw} = P_{gacs} = P_{idw} = P_{i \text{hom}} = 0$$

Nas equações anteriores, δ_2 = 1 para uma caixa de grade na qual q_r e q_s < 1 x 10⁻⁴ g g⁻¹ e, caso contrário, é definido como zero (Lin et al., 1983). D_{gaci} , D_{gacr} e D_{acs} (W_{gaci} , W_{gacr} e W_{acs}) são os termos de produção para as taxas de crescimento seco (úmido) para granizo.

Nota: Um modelo não-hidrostático de nuvens necessita de um esquema de ajustamento que calcule a quantidade de condensação (e/ou deposição) necessária para remover qualquer supersaturação de vapor, ou a quantidade de evaporação (e/ou sublimação) necessário para remover qualquer subsaturação na presença de água de nuvem (gelo em nuvem). Assim, a região de nuvens estará sempre saturada (100% de umidade relativa).

Hipótese de distribuição de tamanhos exponencial inversa (Marshall-Palmer)

$$n_R(D) = n_{0R} \exp(-\lambda_R D_R)$$

$$n_S(D) = n_{0S} \exp(-\lambda_S D_S)$$

$$n_G(D) = n_{0G} \exp(-\lambda_G D_G)$$

onde

 n_{0R} , n_{0S} e n_{0G} são os parâmetros de intercepção de chuva, neve e granizo, respectivamente;

 $n_{0R} = 8 \times 10^{-2} \text{ cm}^{-4} \text{ (Marshall-Palmer, 1948)};$

 $n_{0S} = 3 \times 10^{-2} \text{ cm}^{-4}$ (Gunn and Marshall, 1958);

 $n_{0G} = 4 \times 10^{-4} \text{ cm}^{-4}$ (Federer and Waldvogel, 1975);

D_R, D_S e D_G são diâmetros das partículas de chuva, neve e granizo rspectivamente.

$$\begin{split} \lambda_R &= \left(\frac{\pi \, \rho_R \, n_{0R}}{\rho \, q_R}\right)^{0.25} \\ \lambda_S &= \left(\frac{\pi \, \rho_S \, n_{0S}}{\rho \, q_S}\right)^{0.25} \\ \lambda_G &= \left(\frac{\pi \, \rho_G \, n_{0S}}{\rho \, q_G}\right)^{0.25} \end{split}$$

Parâmetros de inclinação λ_X

onde

 ρ_X são as respectivas densidades das espécies de água, ρ é a densidade do ar e q_X as respectivas razões de mistura de cada espécie. (x = R, S ou G)

 $\lambda_{\rm X}$ são obtidos multiplicando-se as equações de $N_{\rm X}(D_{\rm x})$ pela massa da partícula e integrando sobre todos os diâmetros, igualando-se o resultado pelo apropriado conteúdo de água na coluna.

Obs.: As partículas de gelo de nuvem têm um tamanho único (monodispersa). Diâmetro: 2 x 10⁻³ cm. Densidade: 0.917 g cm⁻³

Velocidade terminal para uma partícula precipitante de diâmetro D_R , D_S ou D_G

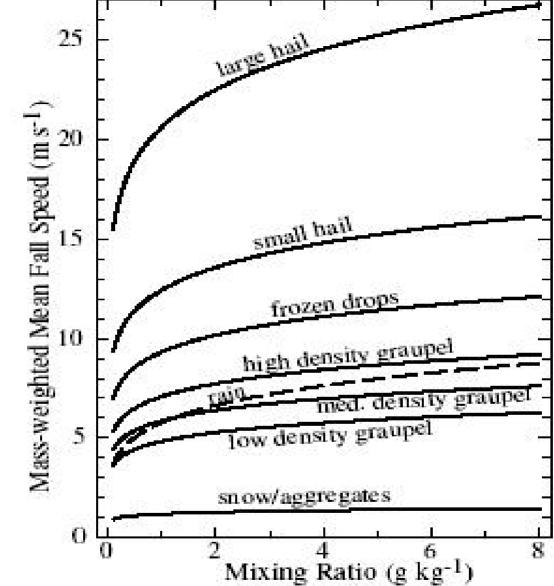
$$U_{DR} = aD_R^b \left(\frac{\rho_0}{\rho}\right)^{1/2}$$

$$U_{DS} = cD_S^d \left(\frac{\rho_0}{\rho}\right)^{1/2}$$

$$U_{DG} = \left(\frac{4g\rho_G}{3C_D\rho}\right)^{1/2} D_G^{1/2}$$

onde

 $a = 2115 \text{ cm}^{1-b} \text{ e b} = 0.8 \text{ (Liu and Orville , 1969);}$


 $c = 152.93 \text{ cm}^{1-d} e d = 0.25$ (Locatelli and Hobbs, 1974);

 $C_D = 0.6$ (Wisner et al., 1972).

Nota: O fator de raiz quadrada envolvendo densidades permite o aumento das velocidades com o aumento da altitude, similar ao considerado em Foote and Toit (1969).

uação IAG 2006

Velocidade terminal média ponderada pela massa.

Vapor d'água Exemplo de P_{int}, P_{depi} apicação: Cristais de gelo P_{saut}, P_{saci}, P_{raci}, P_{sfi} Neve Pgaut, Pgacs, Pracs **Granizo** Precipitação no chão

Nota: A iniciação de gelo em nuvem (P_{int}) e crescimento de gelo em nuvem por deposição de vapor d'água (P_{depi}) são discutidos em Rutledge and Hobbs (1984) e são usados para iniciar o gelo em nuvem num ambiente saturado. Este procedimento pondera a razão de mistura de saturação em favor do gelo em níveis acima do nível de congelamento (0 °C).

Agregação de cristais de gelo para formar neve:

$$P_{saut} = \alpha_1 (q_i - q_{i0})$$

onde q_{i0} é uma quantidade limítrofe a partir da qual há ocorrência da agregação de cristais de gelo. ($q_{i0} = 10^{-3}$ g g⁻¹)

$$\alpha_1 = 10^{-3} \exp[0.025(T - T_0)]$$
 (s⁻¹) e T₀ = 273.16 K

Acresção de cristais de gelo pela neve:

$$P_{saci} = \frac{\pi E_{SI} n_{0S} c q_i \Gamma(3+d)}{4 \lambda_S^{3+d}} \left(\frac{\rho_0}{\rho}\right)^{1/2}$$

onde E_{si} é a eficiência de coleta de cristais de gelo pela neve, que é função da temperatura:

$$E_{SI} = \exp[0.025(T - T_0)]$$

Acresção de cristais de gelo pela água de chuva:

$$P_{raci} = \frac{\pi E_{RI} n_{0R} a q_i \Gamma(3+b)}{4 \lambda_R^{3+b}} \left(\frac{\rho_0}{\rho}\right)^{1/2}$$

onde E_{RI} é a eficiência de coleta de cristais de gelo pela água de chuva, que assume-se ser 1 em Lin et al. (1983).

NOTA:

Nesta parametrização permite-se a coexistência de água de nuvem e cristais de gelo entre as temperaturas de 0 e -40 °C.

P_{sfi} é a taxa de produção para os processos de Bergeron usado no cálculo da taxa de transferência de cristais de gelo para neve por deposição e "riming":

$$P_{sfi} = q_i / \Delta t_1$$

onde Δt_1 é a escala de tempo, dependente da temperatura. Maiores detalhes são encontrados em Hsie et al. (1980).

Agregação de cristais de neve para formar granizo:

$$P_{gaut} = \alpha_2 (q_s - q_{s0})$$

onde q_{s0} é uma quantidade limítrofe a partir da qual há ocorrência da agregação de cristais de gelo. ($q_{s0} = 10^{-3}$ g g⁻¹)

$$\alpha_2 = 10^{-3} \exp[0.09(T - T_0)]$$
 (s⁻¹) e T₀ = 273.16 K

Interação entre flocos de neve e gotas de chuva

Taxa de acresção de neve pela chuva:

$$\begin{split} P_{racs} &= \pi^2 E_{SR} n_{0R} n_{0S} \left| U_R - U_S \right| \left(\frac{\rho_S}{\rho} \right) \times \\ &\times \left(\frac{5}{\lambda_S^6 \lambda_R} + \frac{2}{\lambda_S^5 \lambda_R^2} + \frac{0.5}{\lambda_S^4 \lambda_R^3} \right) \end{split}$$

onde assume-se que E_{SR} , a eficiência de coleta de neve pela chuva, é 1 em Lin et al. (1983).

Interação entre flocos de neve e granizo Taxa de acresção de neve por granizo:

$$\begin{split} P_{gacs} &= \pi^2 E_{GS} n_{0S} n_{0G} \left| U_G - U_S \right| \left(\frac{\rho_S}{\rho} \right) \times \\ &\times \left(\frac{5}{\lambda_S^6 \lambda_G} + \frac{2}{\lambda_S^5 \lambda_G^2} + \frac{0.5}{\lambda_S^4 \lambda_G^3} \right) \end{split}$$

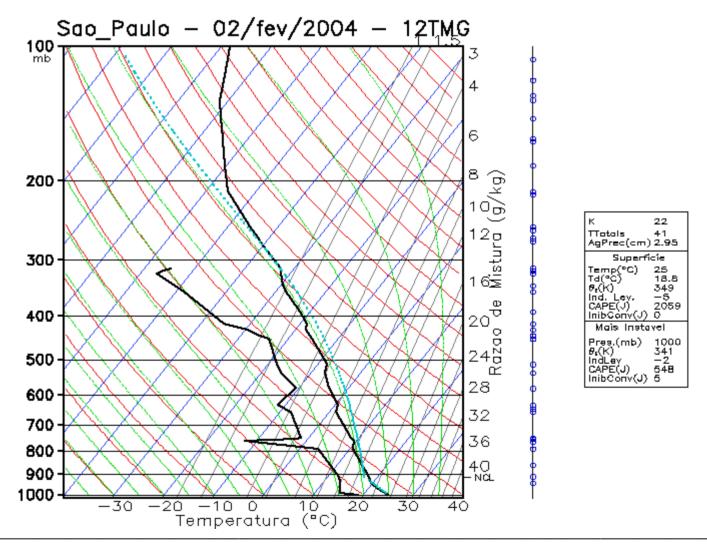
onde assume-se que E_{GS}, a eficiência de coleta de partículas de neve por partículas de granizo, é função da temperatura dada por:

$$E_{GS} = \begin{cases} \exp[0.09(T - T_0)] & T < T_0 \\ 1.0 & T \ge T_0 \end{cases}$$

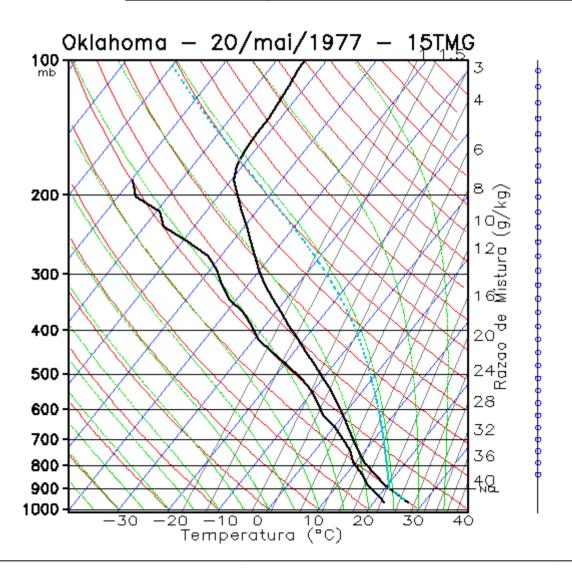
Modelagem numérica de microfísica de nuvens no Advanced Regional Prediction System (ARPS)

Exemplos de Simulações Numéricas

Características básicas das simulações

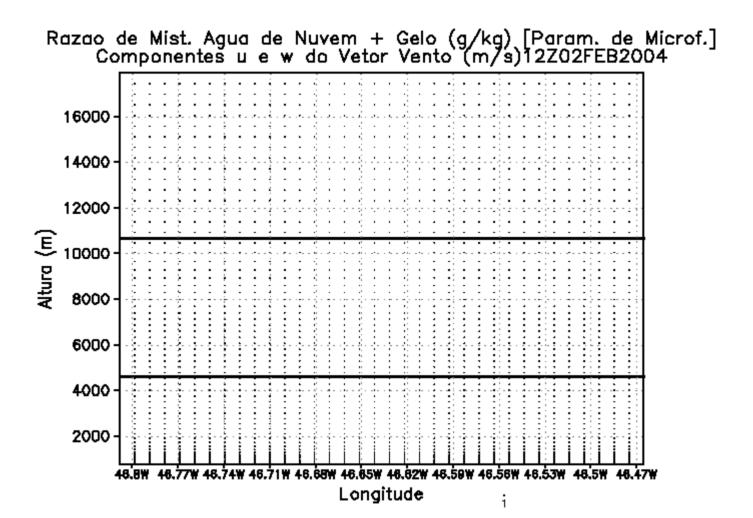

GRADE:

- •número de pontos: 99 x 99 na horizontal e 72 na vertical
- •resolução espacial horizontal: 1000 m x 1000 m
- •resolução espacial vertical: 300 m em média e 50 m nos 8 primeiros níveis do modelo
- •área total: 10⁴ km² na horizontal e topo em 21 km

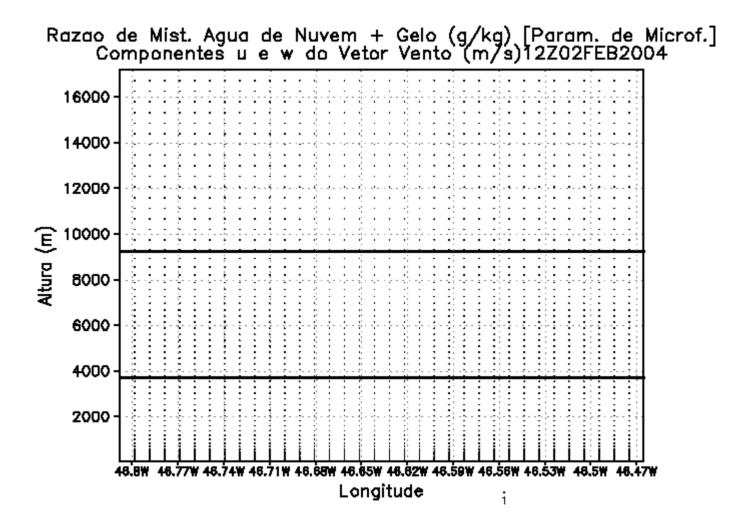

INICIALIZAÇÃO:

- •homogênea na horizontal, com valores iniciais obtidos por sondagens verticais reais da atmosfera
- •forçante térmica por meio de inserção de uma "bolha de ar quente" de formato elipsóide com centro no ponto central da grade do modelo. Dimensões da bolha: 15 km x 15 km na horizontal e 1500 m na vertical e perturbação inicial de 1.6 K

Sondagem levemente instável



Sondagem fortemente instável



Caso levemente instável

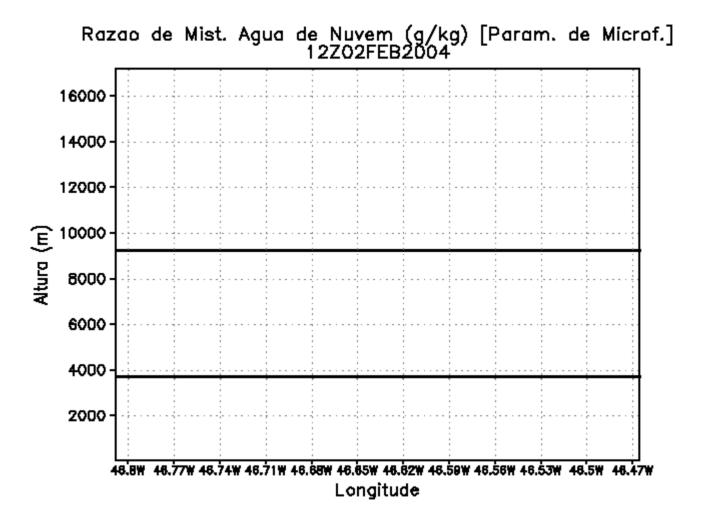
Caso fortemente instável

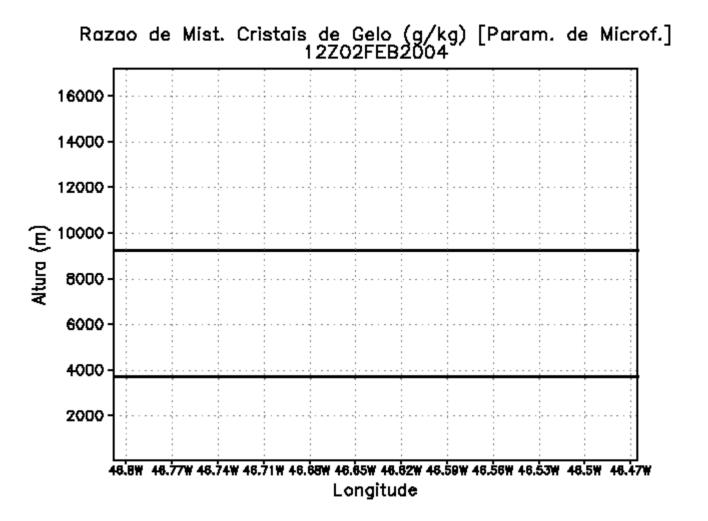
Resumo de eventos no caso mais instável

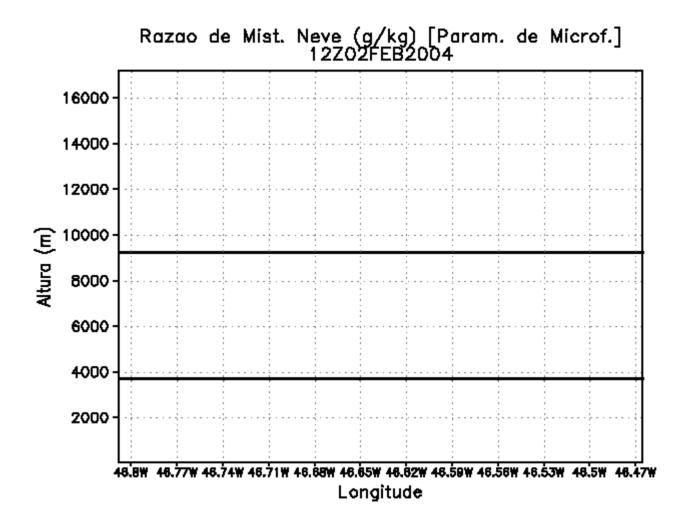
<u>t = 0 min</u>: todas as variáveis têm distribuição homogêna na horizontal, com a isolinha de T = 0 °C em $z \approx 3800$ m

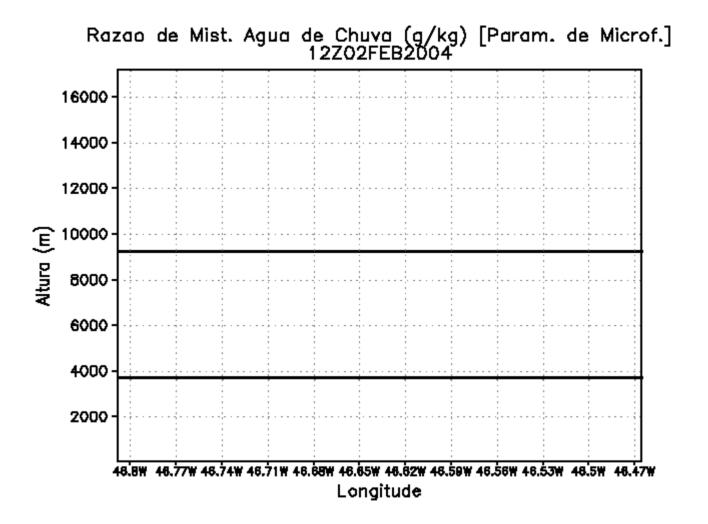
t = 20 min: nuvem quente atinge altura de T = 0 °C

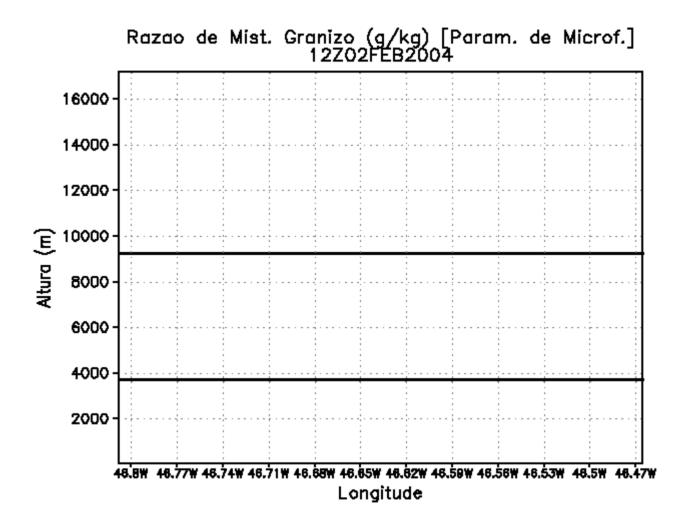
<u>t = 28 min</u>: nuvem atinge altura de T = -40 °C em meio a um crescimento rápido explosivo


t = 31 min: $w_{\text{máx}} \approx 50 \text{ m s}^{-1}$


<u>t = 35 min</u>: início da formação de bigorna em altos níveis pelos cristais de gelo


t = 38 min: pode-se identificar efeito de entranhamento em altos níveis


t = 44 min: novos pulsos de movimento vertical reforçam o Cb


<u>t = 60 min</u>: início da perda de simetria e início da fase de lento decaimento

