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ABSTRACT

The terminal velocity of cloud and precipitation size drops has been analyzed for three physically distinct
flow regimes: 1) slip flow about a water drop treated as rigid sphere at negligible Reynolds numbers, 2)
continuum flow past a water drop treated as a rigid sphere with a steady wake at low and intermediate
Reynolds numbers, and 3) continuum flow around a non-circulating water drop of equilibrium shape with an
unsteady wake at moderate to large Reynolds numbers. In the lower regime the effect of slip was given by
the first-order Knudsen number correction to Stokes drag. In the middle regime a semiempirical drag rela-
tion for a rigid sphere was used to obtain a formula for the Reynolds number in terms of the Davies number.
In the upper regime a correlation of wind tunnel measurements on falling drops was used in conjunction with
sea level terminal velocities for raindrops to obtain a formula for the Reynolds number in terms of the Bond
number and physical property number.

The result for the upper regime gave values of the drag coefficient that were consistent with an invariance
of shape with altitude in the atmosphere. Simple formulas are given for obtaining the axis ratio and pro-
jected diameter as a function of the equivalent spherical diameter. The resulting formulas for the terminal
velocity in three diameter ranges (0.5 um~19 um, 19 pm-1.07 mm, 1.07 mm-7 mm) may be used to calculate
the terminal velocity directly from the equivalent spherical diameter and the physical properties of the drop
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and atmosphere.

i. Introduction

An accurate knowledge of the terminal velocity and
shape of cloud and precipitation drops is needed for
carrying out computations in cloud physics as well as
for interpreting Doppler radar data. Among others,
Laws (1941), Gunn and Kinzer (1949) and Beard and
Pruppacher (1969) have measured the terminal
velocity of drops for laboratory conditions at sea level
whereas the shape of falling drops at sea level has been
determined, for example, by Jones (1959), Pruppacher
and Beard (1970) and Pruppacher and Pitter (1971).
Even though little if any reliable data are available at
other atmospheric conditions, it is within the scope of
our present knowledge to derive reasonably accurate
values for the terminal velocity of water drops for
conditions typical in the atmosphere. Since no unified
treatment of this problem exists and several erroneous
treatments are found in the current literature, the
author has been motivated to evaluate the available
theoretical and empirical information on drops falling
in gases in order to derive a reliable method for obtain-
ing the terminal velocity and shape of a water drop at
any level in the atmosphere.

2. Theoretical basis

The complete physical-mathematical basis for the
terminal velocity and shape of a falling drop is given by

! Present Affiliation: Laboratory for Atmospheric Research,
University of Illinois, and Illinois State Water Survey, Urbana
61801.

the Navier-Stokes equations of motion for the air
flowing past the drop as well as the motion of the water
inside the drop subject to the appropriate dynamic and
kinematic boundary conditions.? Only the steady-state
form of these equations at low and intermediate
Reynolds numbers can be handled with present tech-
niques. For example, the drag on a liquid sphere for
steady, axisymmetric flow was determined analytically
by Rybczynski (1911) and Hadamard (1911) for
creeping flow, and numerically by LeClair et al. (1972)
for low and intermediate Reynolds numbers. An
analytic solution for a drop of small deformation was
obtained by Taylor and Acrivos (1964) using the singu-
lar perturbation technique for steady, axisymmetric
flow at low Reynolds numbers. If the terminal velocity
and shape are to be determined at moderate to large
Reynolds numbers, the theoretical treatment must be
considerably simplified. On the other hand, for very
small cloud droplets there arises a problem in the
application of the Navier-Stokes equations because the
assumption of a continuous surrounding fluid no longer
holds near the droplet surface.

In order to undertake the terminal velocity and
shape problem, it is helpful to employ the reasoning of
dimensional analysis using Rayleigh’s method or the
Buckingham Pi Theorem. This permits the reduction
of the number of variables to the essential dimension-
less groups (e.g., see Perry and Chilton, 1973). The

2 An extensive treatment of the theory at low Reynolds number
may be found in Happle and Brenner (1965).
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variables for a liquid drop falling in still air are related
by an equation in the form

f(t)doi V,Py"b"’i;o')D) =0, (1)

where the diameter (do), the velocity (V), and air
density (p) may be used in Rayleigh’s method to form
five independent dimensionless groups: the Reynolds
number (Nge), the viscosity ratio (7/4:), the drag
coefficient (Cp), the Bond number (Np,) and the
Strouhal number (Ns:).? Obviously, some simplifying
assumptions must be made based on sound theoretical
or empirical knowledge in order to obtain an adequate
description of the coupled terminal velocity and drop
shape problem. In the above analysis the Reynolds
number is undoubtedly a key dimensionless group. In
the subsequent discussion of the terminal velocity and
- shape of cloud drops and raindrops the problem will be
divided into drop size ranges that correspond to three
Reynolds number regimes for steady, free stream flow:

Regime 1: small cloud droplets, 1 pm<doS20 um
(steady wake, vanishingly small Reynolds

: numbers, 106 Ng,$0.01).

Regime 2: large cloud droplets to small raindrops,

" 20 pm<doS1 mm (steady wake, low to

intermediate Reynolds numbers, 0.01
S Nre$300).

Regime 3: small to large raindrops, 1 mm<$ de<S 7 mm
(unsteady wake, moderate to large Rey-
nolds numbers, 300< Ng.<4000).

3. Small cloud droplets(l xm < dy<S 20 um)

For such tiny airborne particles the terminal velocity
is so small (V<1 cm s1) that it may be considered
negligible for many meteorological purposes. On the
other hand, reliable values of the differential settling
velocity of droplet pairs are needed for computing
collision efficiencies. Also, accurate values of the termi-
nal velocity are important for determining the droplet
size in laboratory experiments. Since the Stokes terminal
velocity of a 1 um water droplet is in error by as much
as 17%, it is worthwhile to consider methods that
permit greater accuracy.

In the range of droplet sizes the ratio of the mean
free path (f) of air molecules to the droplet diameter lies
between 0.003 and 0.07. Thus, the Knudsen number
(Ngn=1/dy) is small but not negligible and the air flow
is in a regime between transitional and continuum flow.

" The drag on a rigid sphere in this near-continuum region
has been determined from hydrodynamic theory for
slip flow (Bassett, 1961), from kinetic theory (Epstein,
1924), and from experiments (Knudsen and Weber,
1911), all resulting in similar first-order corrections to
Stokes drag: ' ,

D=D,(1—cNx.), 2

3 A list of symbols is found in the Appendix.
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where D,=3mndoV. Unfortunately, the proportionality
constant (c) is not attainable from hydrodynamic theory
so the actual value of ¢ and the higher order Knudsen
number corrections must be obtained empirically.
Davies (1945) examined the early experimental results
of Knudsen and others, and determined the best coeffi-
cients in the slip correction factor given in the expression

Coo=14(21/do)[1.257+0.400 exp(—1.10d,/21)]
=14¢Nka, (3)

where C,.=D,/D. The proportionality constant in (2)
is seen to be equivalent to ¢’ for small Knudsen num-
bers. The above empirical correction to Stokes drag
should be used with Davies’ value for the mean free
path at 1 atm obtained by comparing his Egs. (9) and
(10) [i.e., 1p=6.62X10~% ¢m]. His formula for the
pressure dependence. of the mean free path ({=7.16
X10~%/p with p in cm Hg) should not be used since /,
determined in this manner is 9.42X10~% cm. On the
other hand, one may obtain the free path directly from
the definition of viscosity given by kinetic theory in
Chapman and Cowling (1970) with the mean molecular
speed evaluated in terms of the pressure and density.
The resulting expression is

1= (n/0.998)(x/2pp)*, : 4

which yields 1p=6.54X10~¢ cm using the currently ac-
cepted value of 7=1.818X10~* g cm™' s at 20°C. The
pressure dependence of the mean free path is then
1=4.97X10~%/p,, with p in cm Hg. Thus Davies ex-
pression appears to be in error by a factor of ~2%.

There is no point in adjusting the coefficients in
Davies/formula to the modern value of [, since this
would not effect C,. determined by (3). The use of (3),
then, requires Jo=6.6210~% cm which may be adjusted
for different pressures and temperature using

I=1o(n/10) (po/P)(T/T0)?, )

where 7o=1.818X10~* g cm™ s7!, po=1013.25 mb,
Ty=293.15 K. This formula differs from those used by
Berry and Pranger (1974) and Davies because the
present formula accounts for temperature variations.
Although the formulas given by (3) and (5) are believed
to be the best available, use of most older expressions
will not cause significant differences in the terminal
velocity of cloud droplets.

The terminal velocity may then be found from the
product of the Stokes terminal velocity for a rigid
sphere and the slip correction factor:

Via=C1oVus=C.c(Apg/181)de?, (6)

where Ap=p;—p. The correction factor C,. has a value
of 1.01 for dg=20 um andincreases to 1.17 for do=1 um.
Since at do=0.5 um the exponential term in (3) has
risen to only 0.002, it is not necessary to use the full
expression. For 0.5< do< 20 pm the first-order Knudsen
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term will suffice. This simplifies Eq. (3) to
Cre=1-+2.511/d, )

so that (6) then reduces to the well-known Stokes-
Cunningham equation. The essential formulas for
computing terminal velocities of small cloud droplets
are summarized in Table 1 (part 1).

4. Large cloud droplets and small raindrops
(20 um<do<1 mm)

a. Observed flow regimes

In the last section the experimentally determined
drag on a droplet at very low Reynolds numbers in
the transition flow region was found to be predictable
from the drag on a rigid sphere. In this section the rigid
sphere approximation is examined for water drops as
large as 1 mm diameter.

The observed flow regimes about a rigid sphere for a
continuous fluid (Nx.<<1) are compiled in Fig. 1 from
the works of Méller (1938), Taneda (1956), Magarvey
and MacLatchy (1965) and Achenbach (1974). The
flow is seen to progress through a series of transitions
from a laminar, symmetrical flow at Nr,=0 to a sepa-
rated, turbulent boundary layer flow with a chaotic
wake for Nr.2400,000. The flow is apparently quite
steady for Ng.$300 although it is no longer axi-
symmetric above N re= 200 because of the formation of
twin vortex trails, The steady transversal motion of a
falling drop observed by Gunn (1949) is believed by
Magarvey and MacLatchy to be the result of a net
sideward force due to wake asymmetry in this flow
regime.* The steady-flow regime (Ng.<$300) corre-
sponds to raindrops with d¢S1 mm based on the ob-
served Reynolds number for falling water drops (Gunn
and Kinzer, 1949). Consequently, it is to be expected
for do<S1 mm that the significant variables which

characterize the terminal velocity problem are related

by an equation of the form
f(dov Vno,Pm,"?i,U;D) =0. (8)

Instead of five independent dimensionless groups, there
are now only four (e.g., Nre, Cp, Npo and 5/n;, where
the Bond number Np,=Apgde?/s). Since dimensional
analysis only provides the method for finding the
number of independent variables, it is important to
conduct further analysis in order to determine the
relative importance of each group.

b. Surface tension effect

The surface tension enters inta the problem through
the equation for the shape given by LaPlace’s formula

4 The onset of sideward motion has been repeatedly observed
by the present author to occur at Ngre=~200 (dy=~0.9 mm) in ex-
periments with drops grown by collision coalescence from cloud
droplets in the UCLA cloud tunnel.
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TasLE 1. Formulas for calculating the terminal velocity of cloud
drops and raindrops in 3 size ranges.

1. 0.5 um<do<19 um
V‘,‘,-—~C1(’,.'udo2
C1=Apg/(1817), Coc=1+2.511/d,
I=lo(n/no) (po/p) (T/T o)}
5=6.62X107% cm, po=1013.25 mb
70=0.0001818 g cm™ §71, T,=293.15 K
2. 19 ym £dp<1.07 mm 3. 1.07 mm <o <7 mm
Vo=nNge/(edo) Va=nNne/(pdo)
Nre=C,, exp(¥) Nro=Np'sexp(F)
Np=d%?/(3'Apg)

Y=bo+b1X+---+beX® Y=byt+-bi X+ -bsX®
o——O 318657E+1 bo= —0.500015E41
=+0.992696 + =-40.523778E+1
=~—0.153193E-2 - =—0.204914E+1
=—0.987059E-3 = -+0.475294
=~0.578878E -3 =—0.542819E~1

+0.855176E—4
bg— —0.32781SE—5

b =40.238449E—2

X= log., (NDa) X =log. (B ONPUG)
Npa=Cauds® = Cyde?
Ca=4pApg/ (3n%) Cs=4Apg/30

for the mechanical equilibrium of an interfacial surface:

i 3.
.,(_+_)=A<p, ©
R, R,

where R; and R, are the principal radii of curvature of
the interface and A® is the total pressure differential
across the interface. The above equation may be
expressed for the curvature at the drop’s equator by
writing A® as the sum of the spherical curvature pres-
sure 40/d,, the hydraulic head Apgdo/2, and the differ-
ential dynamic pressure p,'—p":

1 1 40 Apgd,
a( + ) =—-t +p/ 9.
Rl R2 do 2

From the above equation it can be seen that as long as
the spherical pressure 40/do is dominant, a variation
in surface tension is unimportant.

Water drops falling at terminal velocity are nearly
spherical as long as their size is not too large. The obser-
vations of Pruppacher and Beard (1970) show that the
axis ratio (AR) of falling water drops varied from AR~
0.97 at do=1 mm to AR=~1.00 for 4<0.3 mm. Alter-
natively, Eq. (10) may be evaluated semi-empirically
from the data of LeClair et al. (1972). At dy=1 mm
such an evaluation shows that the hydraulic and dy-
namic pressure terms are only a few percent of the
spherical pressure term. Consequently, drops with
diameters <1 mm are essentially spherical and the
surface tension is not a significant variable. The number
of variables for the dimensional analysis is reduced by

(10)
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\/é— symmetry.
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a. Stokes (Nge=0). Laminar, steady flow. Stream-
lines show axial and fore-aft symmetry

b.Low Reynolds numbers (0<Nge<20). Larﬁinar,
steady axisymmetric flow. Flow no longer has fore-aft

c. Intermediate Reynolds numbers (205 Ng.<200).
Laminar, steady axisymmetric flow, separated with
enclosed vortex ring.

d. Moderate Reynolds numbers ' (3005 Nre $450):
Vortex loops are formed by roll-up and partial detach-
ment of wake vortex ring. For 2005 Nr. $300 steady
twin vortex trails are caused by a single loop being

- carried downstream. Lack of axisymmetry results in
steady sideward motion. For 3005 Ng.5450 vortex
loops detach periodically from diametrical opposite sides
of wake axis producing zig-zag motion.*

e. Large Reynolds numbers (Nre2>450). Wake be-
comes increasingly chaotic at larger Reynolds num-
bers. Flow separation point moves forward until
Ng. 400,000, then abruptly backward with the onset
of turbulent boundary layer.*

* Exact nature of wake instabilities and actual values of transition Reynolds-
numbers are subject to free stream turbulence and boundary effects.

F16. 1. Flow regimes about a rigid sphere in a laminar, steady,
free-stream velocity.
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F16. 2. Deviation of the drag on rigid and liquid spheres and on a water drops falling at terminal velocity from the Stokes drag on a
rigid sphere as a function of the Reynolds number.

eliminating o from (8) which results in only three di-
mensionless groups (e.g., Nre, Cp, 1/%:).

c. Viscosity ratio effect

The value of the viscosity ratio may be utilized to
distinguish between the liquid and rigid sphere problem
for it is obvious that as n/7;— 0 the drag becomes
equivalent to a rigid sphere. However, in order to de-
termine the relative effect of the viscosity ratio in this
particular problem, the theoretical and experimental
results must be considered for the drag on liquid and
rigid spheres.

The flow field inside and outside a liquid sphere was
solved analytically by both Hadamard and Rybczynski
for vanishingly small Reynolds numbers. Their solution
for the magnitude of the drag force in terms of the
Stokes drag on a rigid sphere is

D=Ds(1_n/37’i): (11)

where the correction term is seen to be proportional to
the viscosity ratio. Consequently, the assumption of a
rigid sphere is quite good for very small Reynolds
numbers as long as 5/9:&1. Since 5/4:~0.018 for
water droplets in air, no distinction was made in the
preceding section between the motion of droplets and
solid spheres.

d. Drag on rigid and liquid spheres

At larger Reynolds numbers where the Stokes solu-
tion no longer applies one may use the results plotted
in Fig. 2 to evaluate the drag on rigid and liquid spheres
and on water drops falling in air. In this figure the non-
dimensional variables, Ng. and D/D,—1, are plotted in
a manner devised by Maxworthy (1965). At low
Reynolds numbers the value of D/D,~—1 is particularly
sensitive to deviations from Stokes drag, whereas at
higher Reynolds numbers where D/D>3>1, this function
becomes another form of the drag coefficient since



856 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 33
TABLE 2. Basic drag formulas for the rigid sphere.
D/D,—1=exp(aot+a1 X +a:X?)
X =log,(IVre)
Range ap %) ay : Data source
0.01<Nre<20 —2.029 4-0.8222 ~0.02253 LeClair et al. (1970)
20 < Npe<258 —1.666 +0.6320 0 Beard and Pruppacher (1969)
258 < Nre $ 5000 —0.9100 +0.2619 +-0.04214 Perry (1950)

D/D,=CpN=ye/24. The drag at low Reynolds number
is seen to deviate from the Stokes drag via the well-
known Oseen inertial correction (curve 1). This be-
havior results from the fact that the Oseen rather than
the Stokes solution is the valid zeroth approximation
to the Navier-Stokes equation at small Reynolds
numbers. A subtle but important change in the drag is
noticeable near Nr.=0.05 where the deviation proceeds
via the inertial correction of Proudman and Pearson
(1957) [curve 2. This is nicely verified by the numeri-
cal solutions to the Navier-Stokes equation of LeClair
el al. (1970). Above Nr.~0.5 the analytic, low Reynolds
number solutions are known to get progressively worse
(Pruppacher et al., 1970). However, for Ng.> 10, the
simple boundary layer estimate of Abraham (1970)
gives a surprisingly good representation of the drag.

It is important to note the measured values of Gunn
and Kinzer (1949) for water drops falling in still air.
Although their result for the smallest drops are ap-
parently in error due to evaporation [see discussion in
Beard and Pruppacher (1969, p. 1071)], their mea-
surements in the range 1005 Ngr.S400 correspond
closely to the empirical curve of Beard and Pruppacher,
the rigid sphere curve of Abraham, and the empirical
" curve based on Perry (1950). Above Ng.=400 the
drag on a water drop Is seen to increase faster than for
a solid sphere mainly because of deformation. Some of
the difference between the two curves is due to the use
of do in calculating the Reynolds number. At do=5 mm
the projected diameter is some 119, larger than d,
(given later in Fig. 4). However, the increase in Reynolds
number in going from the drop curve to the sphere
curve in Fig. 2 (for do=>5 mm) is about 70%,. Thus, the
difference in the two curves is not just artificial but is
mainly due to the intrinsically different flow about
deformable drops compared to rigid spheres.

It is quite apparent from Fig. 2 that the drag on a
water'drop may be closely approximated by the drag
on a rigid sphere up to Nge=2300. Of course this outcome
is expected for dy <1 mm since the surface tension and
internal viscosity are known to. be insignificant vari-
ables (i.e., the drag is unaffected by modest changes in
o and 7). Shown in Table 2 are the basic drag formulas
for the rigid sphere obtained by least-squares fit to the
following data. For 0.01< Ng.< 20 the numerical data
of LeClair et al. (1970) were used to obtain a second-
order log-log curve that fits smoothly into the empirical

curve of Beard and Pruppacher for 20< Ng.< 258.
Above the midrange a second-order log-log curve was
fitted to the data of Perry.

e. Terminal velocity results

Unfortunately, the formulas in Table 2 are not in a
convenient form for computing the terminal velocity
from the diameter. The most suitable arrangement of
nondimensional groups was devised by Davies (1945)
who combined the drag coefficient with the square of
the Reynolds number in order to eliminate the terminal
velocity :

(12)

The velocity may then be obtained from a knowledge
of the unique curve for CpNre? vs Nro by first evaluat-
ing CpNr and then V., from the corresponding
Reynolds number. This dimensionless group, ap-
parently originated by Davies, is distinct from any
other group [e.g., see the listing in the Handbook of
Chemistry and Physics (CRC, 1973~74 ed.)]. Such a
distinct and convenient dimensionless number deserves
a name, so it will be referred to as the Davies number
(Np,=CpNre?) after its originator.

The Davies number was generated from the three
basic formulas in Table 2, providing 20 points which
were in turn fitted by the least-squares method to obtain
a sixth-order polynomial in X =log.(Npa) and V=log,
(Nro). The results of this fit are given in Table 1
(part 2) in terms of formulas for computing the terminal
velocity of water drops falling in air for various atmo-
spheric conditions in the size range 19 um < do< 1.07 mm.
In order for this midrange to merge smoothly with the
lowest range it was necessary to incorporate the slip
correction factor in the Reynolds number calculation
but only up to a size do~ 30 um. Thereafter, neglecting
the slip correction results in less than 0.5%, error in V..

The present results and selected previous results for
terminal velocity are compared in Table 3. The three
basic drag formulas given in Table 2 were first used to
calculate accurate terminal velocities for the laboratory
conditions of Gunn and Kinzer, and then a root mean
square (rms) and maximum velocity deviation were
determined for each author’s method. Since the present
method is a sixth-order fit to the basic formulas, the
deviations are understandably small. Since the formulas

CpNro2=4pApgds*/ (37%).
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of Berry and Pranger (1974) are a high order fit to
modern drag data, the deviations are also quite small.
On the other hand, the formulas of Foote and du Toit
(1969), Wobus ef al. (1971) and Dingle and Lee (1972)
are all based on the data of Gunn and Kinzer. The
larger deviations of these methods are due in part to the
inherent inaccuracies of the data of Gunn and Kinzer
for drops with diameters <$0.4 mm (as seen in Fig. 2
for Ng.<40).

Although the present formulation is similar to the
original third-order fit of Davies for a rigid sphere in the
range 25 Vg S 10 000, the lack of good data available
to Davies, especially at lower Reynolds numbers, led
him to a considerably less accurate formulation as
evidenced by the velocity deviations in Table 3. The
error is also seen in the plot of Davies formula in Fig. 2.
Consequently, the present formulation should replace
Davies drag formulation for the rigid sphere in the
range of 0.01< Ng.<300 and should also replace the
formulas based on the data of Gunn and Kinzer for
falling water drops within size range 20 um < doS 1 mm.

5. Raindrops (1 mm<d,<7 mm)
a. General remarks on velocity fluctuations

Modern measurements of the terminal velocity of
large water drops were carried out by Laws (1941),
Davies [quoted by Sutton (1942) and Best (1950)7], and
Gunn and Kinzer (1949). These investigators observed
quite similar velocities for corresponding drop sizes at
sea level conditions. Considering the unsteady nature of
the wake of a drop falling with Nr.2> 300, and consider-
ing the resonance mechanism suggested by Gunn (1949)
in which the vibrational modes of a drop are excited by
vortex shedding, one would expect that the drag on a
drop and thus its fall velocity would fluctuate. However,
the velocity response of the drop to any change in
drag force is limited by the relaxation time which
at these Reynolds numbers is of order V,/g~1 s.
Since the frequency at which resonance occurs, for
any vibration mode, is higher than 400 Hz, it seems
reasonable to conclude that such rapid shape fluctua-
tions would not result in any significant velocity
changes. Indeed, no experimental evidence was reported
on velocity fluctuations in the above studies of drops
falling in still air.

Whereas drops falling at equilibrium in still air
should maintain a steady velocity, drops falling in the
atmosphere must constantly adjust to turbulence. In
fact, the general relationship between the essential
variables shown in (1) should be augmented to include
the characteristics of the turbulence encountered by
the raindrop. Evidence of the effect of turbulence on
raindrop velocity is scant. Laws found about a 29, re-
duction in raindrop velocity for six rain cases when
compared to his still air measurements. These results
are not very conclusive due to large scatter, lack of
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TaBLE 3. Terminal velocity deviations from the basic drag
formulas in the range 20 pm <do< 1 mm at 20°C, 1 atm and 509,
relative humidity.

rms Maximum

devia- devia-
tion tion
Author{s) (%) (%) Range*
Beard 0.09 0.6 20 pum < do< 1 mm
[Table 1] (25 pts.)
Berry and Pranger 1.1 3.2 20 pm £ do <1 mm
{Their Eqs. (8) and (9)] (25 pts.)
Gunn and Kinzer 3.3 8.0 0.1£do<1 mm
{experimental data] (10 pts.)
Foote and du Toit 3.5 13.7 0.1<do<$1 mm
[Their Eq. (9), N =9] (23 pts.)
Dingle and Lee 3.6 8.0 0.1<do <1 mm
[Their Eq. (4a)] (10 pts.)
Wobus et al. 3.3 8.0 0.1<do< 1 mm
[Their Eq. (4)] {10 pts.)
Davies 2.4 7.5 0.1<do<1 mm
[His Eq. (6)] (22 pts.)

* The number of points used in each range is shown in parentheses.

data (only 24 raindrops measured), and the rather
primitive method used for determining raindrop
size. No information at all is given on the degree of
turbulence.

The extent to which turbulence can affect the shape of
raindrops has been documented by Jones (1959) from
nearly 2000 photographs of raindrops at ground level.
He found that the shape varied considerably for a given
size from oblate to prolate spheroidal. For example, at
do=~4 mm the axis ratio ranged between 0.5 and 1.3
with a mean value of 0.85. The distribution of axis
ratios was found to be skewed toward the higher axis
ratios. Consequently, the mean axis ratios found by
Jones are significantly larger than those measured in
the laboratory or computed empirically for still air
(Pruppacher and Pitter, 1971).

It is not clear how such large drop distortions may
affect the velocity. A calculation of the time average
velocity is beyond the present knowledge of the in-
stantaneous forces on a raindrop falling in turbulent
air. From the results of Jones, it is tempting to speculate
that the time average drag coeflicient is lower for
turbulent air because the average shape is less oblate.
However, the information available on raindrop veloci-
ties under natural conditions due to Laws indicates
that the average drag coefficient may actually be higher
in turbulent air.

Since sufficient experimental evidence is lacking to
establish even a tentative relationship between the
average raindrop velocity and the degree of turbulence,
and since no velocity measurements with reliable
independent size evaluations are available for raindrops
falling under natural conditions, use will be made of the
best available velocity measurements for still air. If
the field observations of Laws are at all indicative of
the effect of turbulence, then the velocity estimates
based on still air measurements may be within a few
percent of the fall velocities in the atmosphere.
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b. Terminal velocity in still air

The effect of the reduced air density on the terminal
velocity of raindrops must now be considered in order
to derive a formulation for the terminal velocity of
drops aloft. Measurements of the fallspeed of drops
in still air for reduced air density have been carried
out by Davies [quoted by Sutton (1942) and Best
(1950)]. Unfortunately, Sutton has acknowledged that

these data are probably in error for the larger drops due

to an insufficient fall distance of 11 m. For sea level
density Laws found that 20 m was needed for larger
drops to reach ~99%, of terminal velocity. However,
even with a 20 m distance, the largest drop, do=~6.1 mm,
did not attain a consistent velocity probably because
it had not achieved equilibrium shape. Gunn and Kinzer
used a 20 m fall distance and reported no data for
dy>5.8 mm perhaps due to the same problem in
establishing the equilibrium shape and velocity for
very large drops.

In a comparison by Lane and Green (1956), the
velocities for Davies for sea level conditions are seen
to be a few percent lower than those of Laws and of
Gunn and Kinzer. Although the errors in the Davies
data are small at sea level, they increase considerably
at reduced air densities because the distance needed for
large raindrops to reach terminal velocity varies ap-
proximately with the inverse of the air density. Thus,
the velocity scheme of Foot and du Toit(1969) derived
from Davies data predicts velocities that are errone-
ously low. Unfortunately, there are no other measure-
ments for water drops falling at reduced air densities
available which could be used to update their empirical
formula. '
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and y=Ng,N; 18 for liquid drops falling at terminal velocity
in air. :
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¢. Empirical correlation of physical property effects

Instead of awaiting new measurements, the com-
plexity of the problem can be reduced by inspection.
The remaining variables may then be used to form a
set of dimensionless groups from which a relation for
the terminal velocity may be derived using data
existing in the literature. Since only the average verti-
cal velocity is of interest, the time-dependent effects
can be ignored while acknowledging that small velocity
fluctuations may occur from wake instabilities and air
turbulence. The effects of internal viscosity may be
neglected based on the arguments and evidence pre-
sented on the previous section. Thus, the terminal
velocity problem for large water drops has been simpli-
fied to that of a noncirculating water drop of equilibrium
shape falling in still air. The relationship for the essential
variables may now be written in the form

f(dO;wapynydyD)=07 (13)

which reduces to only three independent dimensionless
groups. The relation between three such independent
groups was established experimentally by Garner and
Lihou (1965) in a study on drops of various liquids
supported by the airstream of a vertical wind tunnel
(in terms of the Reynolds number Ng., a modified
Bond number Bo=4Ng,/3, and a physical property
number that is formed by eliminating the diameter
from the Davies and Bond numbers, i.e., Np=9Np,?/
16N pod=0op%/9*Apg). Garner and Lihou found that a -
plot of logBo vs logNe gave straight, parallel lines for
each Ng, with a slope of —0.471. Similarly, they found
straight, parallel lines for each N in a plot of logBo vs
logNgre with a slope of 1.83 for Ng.21500. The final
relation was obtained from Bo« NEENF0*™ to yield
BoNY¥®c« (NgoN5¥/%)188, A plot of their data for
x=BoN¥® and y=NgN5 Y showed a very close fit to
the curve x=0.75 3%, Another curve x=1.96 !5,
obtained in a similar manner, showed a very close fit
to data for Ng.< 1500.

d. Improved correlation for water drops

The above relations are compared to the well known
sea level data of Gunn and Kinzer in Fig. 3. Although
the results of Garner and Lihou differ somewhat from
the data of Gunn and Kinzer, perhaps due to less
precision in the wind tunnel measurements, their
correlation is valuable in predicting the variation of the
terminal velocity of darge drops with the physical
properties of the system. Therefore, it was necessary to
improve the results of Garner and Lihou at sea level
by using the measurements of Gunn and Kinzer while
retaining the essential form of the correlation. For this
purpose, the data of Gunn and Kinzer were fitted by
the least-square method in x=log,(BoN¥®) and y=log,
(NroN7 Y% shown as the fifth-order curve in Fig. 3.
Also included are two data points of Davies in order to
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F1G. 4. Inverse axis ratio and shape deviation as a function of the equivalent
spherical diameter for three combinations of temperature and pressure.

extend the velocity estimate to do="7 mm. The resulting
formula in Table 1 (part 3) agrees within 3-0.5%, of the

velocities of Gunn and Kinzer at sea level, and may be:

used for drops sizes 1.07 mm < do< 7 mm for an estimate
of terminal velocities in the atmosphere for any reason-
able atmospheric condition. The choice of do=1.07 mm
as the transition size was determined by evaluating the
formulas in adjacent ranges at three different con-
ditions (20°C, 1.20 kg m—3; 20°C, 0.60 kg m™3; —10°C,
0.66 kg m~). These computations yielded crossover
sizes within the range do=1.070.01 m.

e. Drop shape results

The terminal velocities derived by the present method
were used to determine the drop shape as a function of
do and atmospheric conditions. Use was made of the
semi-empirical formulation of Pruppacher and Pitter
(1971) in which the shape is calculated from an evalu-
ation of (10) by approximating the differential dynamic
pressure by the aerodynamic pressure distribution about
a sphere obtained empirically. The results are shown in
Fig. 4 in terms of the inverse axis ratio and the shape
deviation.

The inverse axis ratio is the ratio of the maximum or

. so-called projected diameter (d..) to the height ob-

tained from the drop’s silhouette. The shape deviation
is the deviation of the distortion factor (dm/do) from

. unity and may be used to obtain dn. Both shape parame-

ters reveal only very slight changes in shape with
changes in atmospheric conditions over the range from
1 atm at 20°C, to 500 mb at —10°C, and a hypothetical
test case for 20°C at 0.5 atm.

Considering the approximate nature of both the
velocity and shape calculations, it is doubtful that
anything very significant should be attributed to these
minor changes in shape. Consequently, the following
linear approximations may be used which are indepen-
dent of the atmospheric conditions:

AR~1=0.9+0.1d¢[mm], (14)
p/dy=0.973+0.027d[mm]. (15)

This result is somewhat expected in the light of the
finding of Green (1975) who has calculated the shape
by considering only the hydrostatic terms in (10). It
is quite evident from a comparison of the shape de-
termined by Green with that computed by Pruppacher



860

and Pitter that the aerodynamic pressure serves to dis-
tort the pure oblate shape determined by hydrostatics
alone. However, the axis ratio and projected diameter
remain essentially unaffected, so that the primary
spheroidal shape is a function only of the hydrostatic
dimensionless group, Ng.= Apgde?/o. For a drop falling
in the atmosphere the Boud number varies mainly with
the raindrop size since an atmospheric change from 20°C
to —10°C can only reduce Ng, by a maximum of 6%.

J. Drag coefficient results

The relation between the present and previous results
is best understood from an analysis of the drag coefficient
shown in Fig. 5. It is especially helpful to consider the
drag coefficient curve for a particular raindrop shape
since the hydrostatic and dynamic methods have shown
that drops falling in still air are essentially shape in-
variant with changing atmospheric conditions. Al-
though no information exists for raindrop shapes that
are more complex than oblate spheroids, use can be
made of the fact that all spheroids have similar Cp
curves as long as the flow is steady (Stringham et al.,
1969). This similarity is seen between curve 1 for the
rigid sphere, based on the drag formulas in Table 2,
and curve 2 for an oblate spheroid with AR=0.52
after Stringham et al. If Cp and Nr, were to be calcu-
lated using d.. instead of do, then the oblate spheroid
curve would be somewhat closer to the sphere curve.
However, the two curves remain quite distinct (String-
ham et gl.) because of the intrinsically different flow
about an oblate spheroid compared to a sphere.
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Since no reliable data are available for oblate spher-
oids with axis ratios which approximately correspond
to the shape of large raindrops, the mean value of curves
1 and 2 was taken to represent an oblate spheroid with
an intermediate axis ratio of AR~0.76. The inter-
ception of curve 3 with the empirical findings of Gunn
and Kinzer (curve 4) occurs at do=4.5 mm, a size
that has an axis ratio of 0.73 according to the method of
Pruppacher and Pitter.

The various methods for predicting the terminal
velocity of a 4.5 mm drop at 20°C and a reduced air
density of 0.60 kg m™— can now be examined after calcu-
lating the drag coefficient from C p=4Apgds/ (3pV2).
The result of Foote and du Toit shows an increased
drag. coefficient which originates in the erroneously
low terminal velocities of Davies. The values computed
by Berry and Pranger lie on curve 4 since the drag
coefficient curve of Gunn and Kinzer was used as the
constraint for the velocity adjustment. Both of these
results indicate a considerable change in shape. The
drag coefficient result of the present method for the 4.5
mm drop at 0.60 kg m™3 is seen to lie very close to the
estimated Cp curve for constant shape, which is quite
consistent with the prior shape analysis. Thus, the
present method for calculating V,, is independently
verified by the near coincidence of the calculated value
of Cp with the curve of constant shape.

The data points computed for lower air densities lie
on the single dashed curve which is determined by the
unique relation for Cp in terms of Ng. at constant
Davies number (i.e., Cp=Np,Ngl). If the drag co-

1.2 I T T TTT] T I T
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1. Sphere (AR=1), present formula
2. Oblate spheroid (AR=0.52), Stringham, et al. (1969)
3. ObTate spheroid (AR=0.76), interpolation
° 1.0 4. Water drop, Gunn & Kinzer (1949); 20°C, 1.20 kg m-* —|
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FiG. 5. Drag coefficient of a rigid sphere, oblate spheroids, and water drops falling at
terminal velocity in air at sea level as a function of the Reynolds number.



Mav 1976

efficient itself is assumed to be invariant with a change
in air density, then the point for the 4.5 mm drop at
0.6 kg m~® would lie on the dashed curve at Cp=0.6.
A constant Cp estimate is only reasonable as long as
the slope of the drag curve is small. As the drop size
decreases, the use of a constant Cp becomes progres-
sively worse because of the increased steepness of the
appropriate Cp curve. '

A method devised by Battan (1964) can also be
evaluated using the Cp curves. For this method the
sea level velocity for the drop is multiplied by the ratio
of the velocities of an equivalent water sphere at a
reduced air density to that at sea level. This method
determines the adjusted drag coefficient by multiplying
the sea level drag coefficient for the drop by the ratio
of the drag coefficients for a water sphere at a reduced
air density to that at sea level. The values of Cp for
the 4.5 mm water sphere are shown in Fig. 5. The
efficacy of Battan’s method is due to the invariance
of drop shape and the fact that all spheroid drag
coefficient curves have similar characteristics. Thus, the
method of Battan yields a drag coefficient correction
based on the Cp curve for a sphere that is close to the
actual Cp adjustment for a drop of constant shape.

g Terminal velocity resulls

The present and previous results for the terminal
velocity of raindrops are compared in Fig. 6. It is evi-
dent from curve 1 that the present method closely
fits the data of Gunn and Kinzer whereas the data of
Davies for the same air density of 1.20 kg m— are seen
to lie somewhat below the curve. When the density is
reduced to 0.60 kg m—3, the velocity obtained by the
present method is as much as 9%, higher than that of
Foote and du Toit and considerably lower than the
formula of Berry and Pranger which supposedly ex-
tends to do=>35.8 mm. This latter method assumes that
the larger drops change shape aloft only along the
drag coefticient curve of Gunn and Kinzer. There is no
physical basis for this assumption; in fact, as Foote and
du Toit have pointed out, such a restraint leads to an
excessively large terminal velocity aloft. For the largest
raindrop sizes, there is close agreement between the
present result and the constant drag coefficient method
given by curve 5 obtained from pV 2= constant. This
method provides a simple means of estimating V,, aloft
although the error increases as the size decreases. For
do<1 mm the constant Cp method is incompatible
with the actual variation of Cp for a drop, i.e., Cp for
the rigid sphere. In constrast, the method of Battan
predicts fall velocities at a reduced air density that
differ only slightly from the present result even for the
smaller raindrops. This close agreement was expected
on the basis of the drag coefficient analysis. However,
the use of this alternative method requires the calcu-
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F1c. 6. Comparison of the terminal velocity of raindrops aloft
based on various methods as a function of the equivalent spherical
diameter. Also shown are the basic data and resulting curve for
sea level.

lation of rigid sphere vaelocities and cannot be used
readily unless a relationship between Ng. and Np, is
developed for the range 300< Nr.<4000. Therefore,
the present result given in Table 1 (part 3) is more
convenient because terminal velocities can be calculated
directly from the raindrop size and atmospheric
conditions. :

For estimating raindrop velocities aloft by the present
method, the summer-time atmosphere of Foote and
du Toit was assumed in which the air density is reduced
to a value of 0.66 kg m~® at 500 mb. The terminal
velocities for five levels are shown in Fig. 7 along with
the sea level result of Gunn and Kinzer. The velocity
for large raindrops is seen to increase considerably
from a sea level value of 9 m s™ to a 500 mb value in
excess of 12 m s~
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F1G. 7. Terminal velocity of raindrops at five pressure levels
in a summer atmosphere as a function of the equivalent spherical
diameter. Also shown in the standard curve for sea level.

6. Conclusions

Three semi-empirical formulas have been developed
for the terminal velocity of water drops applicable to all
atmospheric' conditions which are based on three
physically distinct flow regimes:

1) Slip flow about a rigid sphere at negligible
Reynolds numbers (10-8< Ng.$0.01), O. 5 um< do< 19
pm;

2) Continuum flow past a rigid sphere at low and
intermediate Reynolds numbers (0.01.5Ngr.<300),
19 um < do < 1.07 mm.

3) Continuum flow around a non-circulating water
drop of equilibrium shape at moderate to large Reynolds
number (3005 Ng.<4000), 1.07 mm < do< 7 mm.

In the lower regime the effects of slip were accounted
for by use of a first-order Knudsen number correction
in the Stokes~Cunmngham factor applied to a rigid
sphere in Stokes flow. The variation of the mean free
path with atmospheric conditions, obtained from
kinetic theory, was found to-differ from formulas pre-
sented in the literature.

In the flow regime for low to intermediate Reynolds
numbers, the effects of a varying surface tension and
internal viscosity were shown to have a negligible
influence on the shape and terminal velocity of a falling
drop for oS 1'mm. Thus, the probiem reduced to de-
termining the terminal velocity for a rigid sphere. The
final formula for ¥V, was developed after an analysis of
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the relevant theoretical and experimental data, and
the result was found to differ somewhat from methods
based on the data of Gunn-and Kinzer, especially for
smaller drops.

In the upper flow regime the effects of the unsteady
wake did not appear to perturb the vertical velocity
significantly. Although air turbulence was found to have
a marked effect on raindrop shape, the values of V,, in
the literature for natural rainfall differed only slightly
from laboratory measurements. Because no quantitative
information existed on the relation between raindrop
velocity and turbulence, the problem was centered on
obtaining estimates of the terminal velocity for drops
falling in still air, which reduced to finding the relation
between the three dimensionless groups for the terminal
velocity of a noncirculating water drop of equilibrium
shape in still air. The results of Garner and Lihou for
drops of various liquids suspended in the airstream of a
wind tunnel provided the relation for the variation
of V, with the physical properties. The data of
Gunn and Kinzer were then used to obtain the final
formula for V,. An analysis of the drop shape result-
ing from use of the present velocities in the scheme
of Pruppacher and Pitter revealed that the shape was
essentially invariant with atmospheric conditions. This
conclusion was consistent with the subsequent analysis
of the drag coefficient that demonstrated how the present
value of Cp varied for different atmospheric conditions
along a curve of constant shape. Two simple formulas
were given for the axis ratio and the projected diameter
both as a function of only the drop size do. A comparison
of the present result at a reduced air density with the
previous methods for calculating V,, aloft showed that
the scheme of Foote and du Toit predicted velocities
that were too small, whereas the method of Berry and
Pranger predicted velocities that were too large. On the
other hand, the method of Battan proved to be in close
agreement with the present result over the entire range
of raindrop sizes..

The formulas for all three ranges were tested at the
crossover points and found to merge smoothly even at
an extreme condition of 500 mb and —10°C. The given
formulas can be utilized in a computer program by
specifying the physical properties (T,p,p.Ap,m,0,8) in
order to obtain V,, dn and AR directly from do, or
obtain dq, d», and AR from V., by simple iteration.
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APPENDIX
List of Symbols

axis ratio

Bo modified Bond number [ =4Ng,/3]

¢, C proportionality constants for Knudsen number
correction to Stokes drag

Cp drag coefficient [ =8D (wd 2oV 2)™!
=4Apgdo/ (3pV2)]

Coe slip correction factor

D drag force at terminal velocity [ =wd*Apg/6]

do equivalent spherical diameter

dm maximum diameter (i.e., projected diameter)

g acceleration of gravity [=9.8 m s2]

i subscript for inner fluid (i.e., water)

! mean free path of air molecules

Np, Bond number [=Apgdy?/a]

Np.,  Davies number [=CpNre=4pApgds®/3n%]

Nk,  Knudsen number [=1/do]

Np physical property number [ =¢%?/7*Apg ]

NRe Reynolds number [=pV .do/1]

Ng; Strouhal number [vortex shedding frequency

times do/ V.. ]
subscript for standard condition (1 atm, 20°C)
total fluid pressure (i.e., static plus dynamic)
dynamic pressure
static pressure
principal radii of curvature
subscript for Stokes solution
thermodynamic temperature
time
fluid velocity
terminal velocity
log, (N Re) O log.(x)
BoN¥*®
logE(NDa) or log.(y)
NgNp*

YNNG RS QO
&

8

B B B

difference between fluid propertles of drop and
air (e.g., Ap=pi—p)

dynamic viscosity

fluid density

o surface tension

v 3
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